
Basics

• With sample if you set size = 2, you
can almost simulate a pair of dice.

• “Almost” because if you use it many
times, you’ll notice that the second
die never has the same value as the
first die.

• By default, sample builds a
sample without replacement.

Sample with replacement

Basics

• In the real world, when you roll a pair of
dice, each die is independent of the other.

• If the first die comes up six, it does not
prevent the second die from coming up
six.

• You can recreate this behaviour
in sample by adding the
argument replace = TRUE

• The argument replace =
TRUE causes sample to sample with
replacement.

Sample with replacement

Basics

• You already have working R code that
simulates rolling a pair of dice and
summing the result.

• You can retype this code into the console
anytime you want to re-roll your dice.

• However, this is an awkward way to work
with the code.

• It would be easier to use your code if you
wrapped it into its own function, which is
exactly what we’ll do now.

Writing your own functions

Basics

• We’re going to write a function
named roll that you can use to roll your
virtual dice.

• When you’re finished, the function will
work like this: each time you call roll(),
R will return the sum of rolling two dice.

Writing your own functions

Basics

• Every function in R has three basic parts: a
name, a body of code, and a set of arguments.

• To make your own function, you need to
replicate these parts and store them in an R
object, which you can do with
the function function.

• To do this, call function() and follow it with
a pair of braces, {}.

• function will build a function out of
whatever R code you place between the
braces.

Function constructor

Basics

• You can turn your dice code into a function
by calling roll()

• Notice that I indented each line of code
between the braces. This makes the code
easier for you and me to read but has no
impact on how the code runs. R ignores
spaces and line breaks and executes one
complete expression at a time.

• Just hit the Enter key between each line
after the first brace, {. R will wait for you to
type the last brace, }, before it responds.

Function constructor

Basics

• Don’t forget to save the output
of function to an R object.

• To use it, write the object’s name followed
by an open and closed parenthesis.

• You can think of the parentheses as the
“trigger” that causes R to run the function.

• If you type in a function’s name without the
parentheses, R will show you the code that
is stored inside the function. If you type in
the name with the parentheses, R will run
that code.

Function constructor

Basics

• The code that you place inside your
function is known as the body of the
function. When you run a function in R, R
will execute all of the code in the body
and then return the result of the last line
of code. If the last line of code doesn’t
return a value, neither will your function,
so you want to ensure that your final line
of code returns a value.

Function constructor

Basics

• What if we removed one line of code
from our function and changed the
name die to bones, like this?

Arguments

Basics

• Now I’ll get an error when I run the
function. The function needs the
object bones to do its job, but there is no
object named bones to be found.

Arguments

Basics

• You can supply bones when you
call roll2 if you make bones an
argument of the function. To do this, put
the name bones in the parentheses that
follow function when you define roll2:

• Now roll2 will work as long as you
supply bones when you call the function.
You can take advantage of this to roll
different types of dice each time you
call roll2

Arguments

Basics

• Remember, we’re rolling pairs of dice.

• Now roll2 will work as long as you
supply bones when you call the function.
You can take advantage of this to roll
different types of dice each time you
call roll2

Arguments

Basics

• Notice that roll2 will still give an error if
you do not supply a value for
the bones argument when you call roll2

Arguments

Basics

• You can prevent this error by giving
the bones argument a default value. To
do this, set bones equal to a value when
you define roll2

• Now you can supply a new value
for bones if you like, and roll2 will use
the default if you do not.

Arguments

Basics

• You can give your functions as many
arguments as you like. Just list their
names, separated by commas, in the
parentheses that follow function. When
the function is run, R will replace each
argument name in the function body
with the value that the user supplies for
the argument. If the user does not supply
a value, R will replace the argument
name with the argument’s default value
(if you defined one).

Arguments

Basics

• What if you want to edit roll2 again?
You could go back and retype each line
of code in roll2, but it would be so
much easier if you had a draft of the code
to start from. You can create a draft of
your code as you go by using an R script.
An R script is just a plain text file that you
save R code in. You can open an R script
in RStudio by going to File > New
File > R script in the menu bar.
RStudio will then open a fresh script
above your console pane.

Scripts

Basics

• RStudio comes with many built-in features
that make it easy to work with scripts. First,
you can automatically execute a line of
code in a script by clicking the Run button.

• R will run whichever line of code your
cursor is on. If you have a whole section
highlighted, R will run the highlighted
code. Alternatively, you can run the entire
script by clicking the Source button. Don’t
like clicking buttons? You can use Control +
Return as a shortcut for the Run button. On
Macs, that would be Command + Return.

Scripts

Packages
• You now have a function that simulates rolling a pair of dice. Let’s make things a

little more interesting by weighting the dice in your favor. Let’s make the dice roll
high numbers slightly more often than it rolls low numbers.

• Before we weight the dice, we should make sure that they are fair to begin with.
Two tools will help you do this: repetition and visualization.

• We will repeat our dice rolls with a function called replicate, and we will
visualize our rolls with a function called qplot. qplot does not come with R
when you download it; qplot comes in a standalone R package. Many of the
most useful R tools come in R packages, so let’s take a moment to look at what R
packages are and how you can use them.

Introduction

Packages
• You’re not the only person writing your own functions with R. Many professors,

programmers, and statisticians use R to design tools that can help people
analyze data. They then make these tools free for anyone to use. To use these
tools, you just have to download them.

• They come as preassembled collections of functions and objects called
packages.

• We’re going to use the qplot function to make some quick plots. qplot comes
in the ggplot2 package, a popular package for making graphs. Before you can
use qplot, or anything else in the ggplot2 package, you need to download and
install it.

Introduction

Packages
• Each R package is hosted at http://

cran.r-project.org, the same website
that hosts R.

• However, you don’t need to visit the
website to download an R package;
you can download packages straight
from R’s command line.

• Open RStudio.

• Make sure you are connected to the
Internet.

• Run install.packages("ggplot2")

Install.packages

http://cran.r-project.org/
http://cran.r-project.org/

Packages

• That’s it. R will have your computer
visit the website, download ggplot2,
and install the package in your hard
drive right where R wants to find it.
You now have the ggplot2 package. If
you would like to install another
package, replace ggplot2 with your
package name in the code.

Install.packages

Packages

• Installing a package doesn’t place its
functions at your fingertips just yet: it
simply places them in your hard drive.
To use an R package, you next have to
load it in your R session with the
command library("ggplot2").

• If you would like to load a different
package, replace ggplot2 with your
package name in the code.

Library

Packages

• To see what this does, try an
experiment. First, ask R to show you
the qplot function.

• R won’t be able to
find qplot because qplot lives in the
ggplot2 package, which you haven’t
loaded.

Library

Packages

• Now load the ggplot2 package.

• If you installed the package
with install.packages as
instructed, everything should go fine.

• Don’t worry if you don’t see any
results or messages. No news is fine
news when loading a package.

Library

Packages

• Now if you ask to see qplot, R will
show you quite a bit of code.

• The main thing to remember is that you
only need to install a package once, but
you need to load it with library each
time you wish to use it in a new R
session.

• R will unload all of its packages each
time you close RStudio.

Library

Packages

• Now that you’ve loaded qplot, let’s
take it for a spin. qplot makes “quick
plots.”

• If you give qplot two vectors of equal
lengths, qplot will draw a scatterplot
for you. qplot will use the first vector
as a set of x values and the second
vector as a set of y values.

qplot

Packages
qplot

Packages

• You don’t need to name your
vectors x and y. I just did that to make
the example clear.

• How did R match up the values
in x and y to make these points? With
element-wise execution.

qplot

Packages

• Scatterplots are useful for visualizing the
relationship between two variables.
However, we’re going to use a different
type of graph, a histogram.

• A histogram visualizes the distribution of
a single variable; it displays how many
data points appear at each value of x.

• qplot will make a histogram whenever
you give it only one vector to plot.

qplot

Packages
Plot from the previous R code

Packages

• This plot shows that our vector contains one value in the interval [1, 2) by
placing a bar of height 1 above that interval. Similarly, the plot shows that the
vector contains three values in the interval [2, 3) by placing a bar of height 3 in
that interval. It shows that the vector contains two values in the interval [3,
4) by placing a bar of height 2 in that interval. In these intervals, the hard
bracket, [, means that the first number is included in the interval. The
parenthesis,), means that the last number is not included.

Introduction

