
Packages

• How can you use a histogram to check
the accuracy of your dice?

• If you roll your dice many times and
keep track of the results, you would
expect some numbers to occur more
than others. This is because there are
more ways to get some numbers by
adding two dice together than to get
other numbers.

• See what convolution is.

Check accuracy of your dice

https://youtu.be/KuXjwB4LzSA?si=U4DAPzV7DrdZ0Kir

Packages

• If you roll your dice many times and plot
the results with qplot, the histogram
will show you how often each sum
appeared. The sums that occurred most
often will have the highest bars.

• This is where replicate comes
in. replicate provides an easy way to
repeat an R command many times.

• To use it, first give replicate the
number of times you wish to repeat an R
command, and then give it the
command you wish to repeat.

Check accuracy of your dice

Packages
Plot from the previous R code

Getting help

• There are over 1,000 functions at the
core of R.

• This can be a lot of material to
memorize and learn!

• Luckily, each R function comes with its
own help page, which you can access
by typing the function’s name after a
question mark.

• Help pages contain useful information
about what each function does.

Help pages

Getting help

• Description - A short summary of what the function does.

• Usage - An example of how you would type the function.

• Arguments - A list of each argument the function takes, what type of
information R expects you to supply for the argument, and what the function will
do with the information.

• Details - A more in-depth description of the function and how it operates.

• Value - A description of what the function returns when you run it.

• See Also - A short list of related R functions

Parts of a Help page

Playing with cards

Dealing with data

• In this section, you’ll design a deck of
playing cards that you can shuffle and
deal from. Best of all, the deck will
remember which cards have been
dealt–just like a real deck.

• You can use the deck to play card
games, tell fortunes, and test card-
counting strategies.

What you’ll learn

Along the way, you will learn how to:

• Save new types of data, like character

strings and logical values.

• Save a data set as a vector, matrix, array,
list, or data frame.

• Load and save your own data sets with R

• Extract individual values from a data set

• Change individual values within a data
set

• Write logical tests

R Objects

• You’ll start by building simple R
objects that represent playing cards
and then work your way up to a full-
blown table of data.

• In short, you’ll build the equivalent of
an Excel spreadsheet from scratch.

• When you are finished, your deck of
cards will look something like this

Create a deck of 52 cards

R Objects

• Do you need to build a data set from
scratch to use it in R?

• Not at all.

• You can load most data sets into R
with one simple step (we’ll see it later).

• This exercise will teach you how R
stores data, and how you can
assemble your own data sets.

Create a deck of 52 cards

R Objects

• An atomic vector is just a simple
vector of data.

• The die object from the previous
section was an atomic vector.

• You can make an atomic vector by
grouping some values of data
together with c

Atomic vectors

R Objects

• You can test whether an object is an
atomic vector or not using
is.vector

• It returns TRUE if the object is an
atomic vector and FALSE otherwise.

Atomic vectors

R Objects

• You can also make an atomic vector
with just one value.

• R saves single values as an atomic
vector of length 1.

Atomic vectors

R Objects

• You can check the length of an atomic
vector with length .

Atomic vectors

R Objects

• Each atomic vector stores its values as
a one-dimensional vector, and each
atomic vector can only store one type
of data. You can save different types of
data in R by using different types of
atomic vectors. Altogether, R
recognizes six basic types of atomic
vectors: doubles, integers, characters,
logicals, complex, and raw.

Atomic vectors

R Objects

• To create your card deck, you will need
to use different types of atomic vectors
to save different types of information.

• You can do this by using some simple
conventions when you enter your data.

• For example, you can create an integer
vector by including a capital L with
your input. You can create a character
vector by surrounding your input in
quotation marks

Atomic vectors

R Objects

• Each type of atomic vector has its own
convention.

• R will recognize the convention and
use it to create an atomic vector of the
appropriate type.

• If you’d like to make atomic vectors
that have more than one element in
them, you can combine an element
with the c function.

Atomic vectors

R Objects

• You may wonder why R uses multiple
types of vectors.

• Vector types help R behave as you
would expect.

• For example, R will do math with
atomic vectors that contain numbers,
but not with atomic vectors that
contain character strings.

Atomic vectors

R Objects

• A double vector stores regular
numbers.

• The numbers can be positive or
negative, large or small, and have
digits to the right of the decimal place
or not.

• In general, R will save any number that
you type in R as a double.

• For example, the die you made
previously was a double object.

Doubles

R Objects

• Some R functions refer to doubles as
“numerics,” and I will often do the
same.

• Double is a computer science term.

• It refers to the specific number of
bytes your computer uses to store a
number, but I find “numeric” to be
much more intuitive when doing data
science.

Doubles

R Objects

• Integer vectors store integers,
numbers that can be written without a
decimal component.

• As a data scientist, you won’t use the
integer type very often because you
can save integers as a double object.

• You can specifically create an integer
in R by typing a number followed by
an uppercase L.

Integers

R Objects

• Note that R won’t save a number as an
integer unless you include the L.

• Integer numbers without the L will be
saved as doubles.

• The only difference
between 4 and 4L is how R saves the
number in your computer’s memory.

• Integers are defined more precisely in
your computer’s memory than
doubles.

Integers

R Objects

• Why would you save your data as an integer instead of a double?

• Sometimes a difference in precision can have surprising effects.

• Your computer allocates 64 bits of memory to store each double in an R
program. This allows a lot of precision, but some numbers cannot be expressed
exactly in 64 bits. For example, the number 𝜋 contains an endless sequences of
digits to the right of the decimal place. Your computer must round 𝜋 to
something close to, but not exactly equal to 𝜋 to store 𝜋 in its memory. Many
decimal numbers share a similar fate.

• As a result, each double is accurate to about 16 significant digits. This introduces
a little bit of error. In most cases, this rounding error will go unnoticed. However,
in some situations, the rounding error can cause surprising results.

Integers vs Doubles

R Objects

• For example, you may expect the
result of the expression on the right to
be zero, but it is not.

• The square root of two cannot be
expressed exactly in 16 significant
digits.

• As a result, R has to round the
quantity, and the expression resolves
to something very close to—but not
quite—zero.

A problem

R Objects

• These errors are known as floating-
point errors, and doing arithmetic in
these conditions is known as floating-
point arithmetic.

• Floating-point arithmetic is not a
feature of R; it is a feature of computer
programming. Usually floating-point
errors won’t be enough to ruin your
day.

• Just keep in mind that they may be the
cause of surprising results.

Floating point

R Objects

• A character vector stores small pieces
of text.

• You can create a character vector in R
by typing a character or string of
characters surrounded by quotes.

• The individual elements of a character
vector are known as strings.

• Note that a string can contain more
than just letters. You can assemble a
character string from numbers or
symbols as well.

Characters

R Objects

• Logical vectors store TRUEs
and FALSEs, R’s form of Boolean data.
Logicals are very helpful for doing
things like comparisons.

• Any time you type TRUE or FALSE in
capital letters (without quotation
marks), R will treat your input as logical
data.

• R also assumes that T and F are
shorthand for TRUE and FALSE, unless
they are defined elsewhere (e.g. T <-
500).

Logicals

R Objects
• Doubles, integers, characters, and logicals

are the most common types of atomic
vectors.

• R also recognizes two more types: complex
and raw. It is doubtful that you will ever use
these to analyze data.

• Complex vectors store complex numbers.
To create a complex vector, add an
imaginary term to a number with i

• Raw vectors store raw bytes of data.
Making raw vectors gets complicated, but
you can make an empty raw vector of
length n with raw(n)

Complex and Raw

R Objects

• An attribute is a piece of information that you can attach to an atomic vector.

• The attribute won’t affect any of the values in the object, and it will not appear
when you display your object.

• You can think of an attribute as “metadata”; it is just a convenient place to put
information associated with an object.

• R will normally ignore this metadata, but some R functions will check for
specific attributes.

• These functions may use the attributes to do special things with the data.

Attributes

R Objects

• You can see which attributes an
object has
with attributes. attributes will
return NULL if an object has no
attributes. An atomic vector, like die,
won’t have any attributes unless you
give it some.

Attributes

R Objects

• The most common attributes to give an
atomic vector are names, dimensions
(dim), and classes.

• Each of these attributes has its own
helper function that you can use to
give attributes to an object.

• NULL means that die does not have a
names attribute. You can give one
to die by assigning a character vector
to the output of names. The vector
should include one name for each
element in die

Names

R Objects

• Be careful, the names won’t affect the
actual values of the vector, nor will the
names be affected when you
manipulate the values of the vector.

• You can also use names to change the
names attribute or remove it all
together. To change the names, assign
a new set of labels to names

• To remove the names attribute, set it
to NULL

Names

R Objects

• You can transform an atomic vector
into an n-dimensional array by giving it
a dimensions attribute with dim.

• To do this, set the dim attribute to a
numeric vector of length n.

• R will reorganize the elements of the
vector into n dimensions.

• Each dimension will have as many rows
(or columns, etc.) as the nth value of
the dim vector.

Dim

