R Objects

Dim

You can transform an atomic vector

. . . oL Console Terminal
into an n-dimensional array by giving it

a dimensions attribute with dim. R R441 - ~/
To do this, set the dim attribute to a > die
numeric vector of length n. 11123456
> dim(die) <- c(2, 3)

R will reorganize the elements of the

vector into n dimensions > die

| L,1]1 [,2] [,3]
Each dimension will have as many rows [1,] 1 3 S
(or columns, etc.) as the nth value of [2,] > 4 6

the dim vector. S I



R Objects

Matrices

Matrices store values in a two-dimensional
array, just like a matrix from linear algebra.

To create one, first give matrix an atomic
vector to reorganize Into a matrix.

Then, define how many rows should be in
the matrix by setting the nrow argument
to a number. matrix will organize your
vector of values into a matrix with the
specified number of rows.

Alternatively, you can set
the ncol argument, which tells R how
many columns to include in the matrix.

Console

P R4.4.1 .~

> m <- matrix(die, nrow

> M

[1,]
L2, ]

> |

Terminal

L,1] [,2] [,3]

1
Vi

3
4

5
o

2)



R Objects

Matrices

. matrix will fill up the matrix column  ¢°onsele  Terminal

by column by default, but you can fill S Sl
the matrix row by row if you include > M r.11 .21 [.3]
the argument byrow = TRUE o 1 3 5
. matrix also has other default 2,12 4 6
arguments that yOu can use to > m <- matrix(die, nrow = 2, byrow = TRUE)
. . > M
customize your matrix. You can read r.17 .27 [.3]
about them at matrix’s help page 1,] 1 2 3

(accessible by ?matrix). [2,] 4 5 6



R Objects

Arrays

- The array function creates an n-
dimensional array.

» array is not as customizeable
as matrix and basically does the same
thing as setting the dim attribute.

- To use array, provide an atomic
vector as the first argument, and a
vector of dimensions as the second
argument, called dim

Console

R

> ar <- array(c(1:3, 11:13, 21:23), dim = c(3, 3, 3))

> ar

>

R4.4.1 - ~/

1

[, L2

1 11
2 12
3 13

2

1] L2

1 11
2 12

3 13

3

1] L2

1 11
2 12
3 13

Terminal

[,3]
21
22

23

[,3]
21
22

23

[,3]
21
22

23




P ObjeCtS Console  Terminal

P R4.4.1 .~/
Class > die <- c(1, 2, 3, 4, 5, 6)
Notice that changing the dimensions of your > die
object will not change the type of the object, [11 1 zfidz‘t g 6
: : : . ) > typeof(die
but it will change the object’s class attribute. 17 "double"
A matrix is a special case of an atomic vector. > attributes(die)
. o . NULL
Every element in the matrix is still g double, but > class(die)
the elements have been arranged into a new [1] "numeric"
structure. > dim(die) <- c(2, 3)
: . typeof(die
R added a class attribute to die when you El]yedougle")
changed its dimensions. Many R functions will > attributes(die)
specifically look for an object’s class attribute. $dim
: : ] 11 2 3
Note that an object’s class attribute will not 1]
always appear when you run attributes; you > class(die)
may need to specifically search for it [1] "matrix" "array"

with class oy



R Objects

Dates and Times

« The attribute system lets R represent
more types of data than just doubles, Console Terminal
integers, characters, logicals,

9 J1vd B R4.4.1 -~
complexes, and raws. The time looks

like a character string when you > now <- Sys.time()

display it, but its data type is > NOW

actually "double", and its class [1] "2024-08-09 18:34:18 EDT"
is "POSIXct" "POSIXt" (it has two > |

classes)



R Objects

POSIXct

« POSIXct is a widely used framework for
representing dates and times.

 |In the POSIXct framework, each time is
represented by the number of seconds
that have passed between the time and
12:00 AM January 1st 1970 (UTC).

» R creates the time object by building a
double vector with one

element, 1723242859. You can see this
vector by removing the class attribute
of now, or by using the unclass function,
which does the same thing

Console Terminal

P R4.4.1 .~/

> now <- Sys.time()

> NOW

1] "2024-08-09 18:34:18 EDT"
> typeof(now)

1] "double”

> class(now)

[1] "POSIXct" "POSIXt"

> unclass(now)
1] 1723242859

> |



R Objects

POSIXct

« You can take advantage of this system
by giving the POSIXct class to random
R objects. For example, have you ever
wondered what day it was a million
seconds after 12:00 a.m. Jan. 1, 19707

Console Terminal

P R4.4.1.~/

- Jan. 12, 1970. A million seconds goes > mil <- 1000000
by faster than you would think. This i ;3‘55(’"“) <- c("POSIXct”, "POSIXt")
conversion worked well because r1] "1970-01-12 08:46:40 EST"

the POSIXct class does notrelyonany > |
additional attributes, but in general,

forcing the class of an object is a bad

idea.



R Objects

Factors
« Factors are R’s way of storing Console  Terminal
: : : : . P R4.4.1 .~/
categorical information, like ethnicity > car <= CCVolkswagen®  “Alpine” . "Mercedes”  "Audi™>
or eye color. > car e e
[1] "Volkswagen" "Alpine Mercedes Aud1i
. > typeof(car)
« A factor can only have certain values r17 "character”
and these values may have their own - rerbutestean
idiosyncratic order. > car < factorCear
. [1] Volkswagen Alpine Mercedes  Audi
- This arrangement makes factors very Levels: Alpine Audi Mercedes Volkswagen
: f
useful for recording the treatment 117 imtecans
levels of a study and other categorical e purestean)
variables. [1] "Alpine" "Audi" "Mercedes"  "Volkswagen"
$class

[1] "factor"



R Objects

Factors
- To make a factor, pass an atomic Console  Terminal
: . R R4.4.1 .~/
vector Into the faCtO r funCthn. > car <- c("Volkswagen", "Alpine", "Mercedes", "Audi")
> car
« R will recode the data in the vector as [1] "Volkswagen" "Alpine" "Mercedes"  "Audi"
. . > typeof(car)
integers and store the results in an [1] "character”
. > attributes(car)
Integer vector. NULL
. . > car <- factor(car)
- R will also add a levels attribute to > car
. . . [1] Volkswagen Alpine Mercedes  Audi
the Integer, which contains a set of Levels: Alpine Audi Mercedes Volkswagen
° ° .F
labels for displaying the factor values, 117 imtecans
and a class attribute, which contains e purestean)
the Class fact() I [1] "Alpine” "Audi” "Mercedes”  "Volkswagen”
$class

[1] "factor”



R Objects

Factors

» You can see exactly how R is storing
your factor with unclass

Console Terminal

P R4.4.1 .~/

. R uses the levels attribute when it Ela‘”f‘l“g(;“")
displays the factor. R will display attr(,"levels")
[1] "Alpine" "Audi" "Mercedes" "Volkswagen"

each 1 as Alpine, the first label inthe . -
levels vector. each 2 as Audi1. the [1] Volkswagen Alpine Mercedes  Audi

Levels: Alpine Audi Mercedes Volkswagen

second label etc. >



R Objects

Factors

» Factors can be confusing since they
look like character strings but behave

||ke integerS- Console Terminal
. » R4.4.1 -~/
« R will often try to convert character >Rcar'

strings to factors when you load and [1] Volkswagen Alpine  Mercedes Audi

Levels: Alpine Audi Mercedes Volkswagen

create data. In general, you will have a > typeof(car)
° ° 1 UL t "
smoother experience if you do NOT let I "9

> car <- as.character(car)

R make factors until you ask for them. > car | |
[1] "Volkswagen" "Alpine" "Mercedes" "Audi"

> typeof(car)
» You can convert a factor to a character ;17\ aracter
string with >

the as.character function.



R Objects

Coercion
numeric
. So how does R coerce data types? /
- |f a character string is present in an TRUE — 1
atomic vector, R will convert PALSE 7> 0
everything else in the vector to /
character strings. logical character

. |f a vector only contains logicals and
numbers, R will convert the logicals to
numbers; every TRUE becomes a1, and
every FALSE becomes a O.



R Objects

Coercion
Console Terminal
» R uses the same coercion rgles when B R4.4.1 -~/
you try to do math with logical values. > sum(c(TRUE, TRUE, FALSE, FALSE))
» This means that sum will count the [1] 2

number of TRUEs in a logical vector ES“’;CC(L 1, 0, 0))

(and mean will calculate the proportion > mean(c(TRUE, TRUE, FALSE, FALSE))
of TRUES) [1] 0.5

>



R Objects

Coercion

Many data sets contain multiple types of information.

The inability of vectors, matrices, and arrays to store multiple data types seems
like @ major limitation.

So why bother with them?

In some cases, using only a single type of data is a huge advantage. Vectors,
matrices, and arrays make it very easy to do math on large sets of numbers
because R knows that it can manipulate each value the same way.

Operations with vectors, matrices, and arrays also tend to be fast because the
objects are so simple to store in memory.



R Objects

Lists

» Lists group data into a one-

Console Terminal

dimensional set. 5 R44L .~
: > listl <- 1ist(100:103, "R", 1ist(TRUE, FALSE))
- However, lists do not group together > Tiebt
individual values. They group together [[1]1]
) [1] 100 101 102 103
R objects.
| [[2]]
« For example, you can make a list that [1] "R"
contains a numeric vector of length 31 037
in its first element, a character vector [[3]11C01]]
. . (1] TRUE
of length 1in its second element, and a
new list of length 2 in its third element. Eﬁlﬂfﬁg]

To do this, use the li1ist function.



R Objects

Lists

The double-bracketed indexes tell you

which element of the list is being displayed.

The single-bracket indexes tell you which
subelement of an element is being
displayed.

For example, 100 is the first subelement of
the first element in the list. "R" is the first
sub-element of the second element.

This two-system notation arises because
each element of a list can be any R object,
including a new vector (or list) with its own
indexes.

Console Terminal

P R4.4.1 .~/

> 11stl <- 11st(100:103,
> Listl

LL1]]
[1] 100 101 102 103

[[2]]
[1] "R"

[[3]]
[311L01]]
1] TRUE

LE311LL21]
[1] FALSE

"R", 1ist(TRUE, FALSE))




R Objects

DataFrames

« Data frames are the two-dimensional
version of a list.

- They are far and away the most useful
storage structure for data analysis, and
they provide an ideal way to store an
entire deck of cards.

« You can think of a data frame as R’s
equivalent to the Excel spreadsheet
because it stores data in a similar
format.

® | Intro-to-R.R

EE

samplel
sample2
sample3
sample4
sample5
sample6
sample?
sample8
sample9
samplelO
samplell

samplel?2

Filter
genotype
Wt
Wt
Wt
KO
KO
KO
Wt
Wt
Wt
KO
KO
KO

new_metadata

celltype

typeA
typeA
typeA
typeA
typeA
typeA
typeB
typeB
typeB
typeB
typeB
typeB

replicate

w N = W N = W N = W N @M

Showing 1 to 12 of 12 entries, 5 total columns

samplemeans

10.266102
10.849759
9.452517

15.833872
15.590184
15.551529
15.522219
13.808281
14.108399
10.743292
10.778318
9.754733

age_in_days
40
32

38
35
41
32
34
26
28
28
30
32



R Objects

DataFrames

- Data frames group vectors together 1
into a two-dimensional table. Each
vector becomes a column in the table.

« As a result, each column of a data
frame can contain a different type of
data; but within a column, every cell 3
must be the same type of data.

numeric character logical



R Objects

DataFrames

» Creating a data frame by hand takes a
lot of typing, but you can do it with
the data. frame function.

Console Terminal

+ Give data. frame any number of R R4.4.1-~/

) > df <- data.frame(face = c("ace", "two", "six"),
vectors, each separated with a . suit = c("clubs”, "clubs", "clubs"),
comma + value = c(1, 2, 3))

. > df
face suit value
- Each vector should be set equal to a Y oce clube 1
name that describes the 2 two clubs 2
. 3 six clubs 3
vector. data. frame will turn each :

vector into a column of the new data
frame.



R Objects

DataFrames

« You’'ll need to make sure that each

vector is the same length. Console Terminal

. R R4.4.1 .~/
» |n the previous code, | named the

> df <- data.frame(face = c("ace", "two", "six"),
arguments in data. frame face, suit, - sutt = c("clubs”, "clubs®, "clubs®),
+ value = c(1, 2, 3))
and va lue, but you can name the > df
arguments whatever you like. face suit value
1 ace clubs 1
. 2 two clubs 2
- data. frame will use your argument 3 cix clibs 3
names to label the columns of the data >

frame.



R Objects

DataFrames
Console Terminal
R R441 . ~/
> df
. |f you look at the type of a data frame, face suit value
you will see that it is a list. 1 ace clubs 1
2 two clubs 2
 |n fact, each data frame is a list with 3 six ;3?; 3
> typeo
class data. frame. 17 "list"
: > class(df)
« You can see what types.of objects are 17 "data. frame"
grouped together by a list with > str(df)
"data.frame': 3 obs. of 3 variables:

the str function.

$ face : chr "ace" "two" "six"
$ suit : chr "clubs" "clubs" "clubs"
$ value: num 1 2 3

> |



R Objects

DataFrames

- A data frame is a great way to build an
entire deck of cards.

Console Terminal

R R4.4.1 . ~/

« You can make each row in the data > deck <- data. frane(

=

i+ face = c("king", "queen", "jack", "ten", "nine", "eight", "seven", "six",
. + "five", "four", "three", "two", "ace", "king", "queen", "jack", "ten",
frame 3 p|ay|ng card and each column ; "nine", "eight", "seven", "six", "five", "four", "three", "two", "ace",
/ + "king", "queen", "jack", "ten", "nine", "eight", "seven", "six", "five",
. . i+ "four", "three", "two", "ace", "king", "queen", "jack", "ten", "nine",
a type Of Value—eaCh Wlth ItS Own + "eight", "seven", "six", "five", "four", "three", "two", "ace"),
+ suit = c("spades", "spades", "spades", "spades", "spades", "spades",
° o+ "spades", "spades", "spades", "spades", "spades", "spades", "spades",
apprOp”ate data type. + "clubs", "clubs", "clubs", "clubs", "clubs", "clubs", "clubs", "clubs",
i+ "clubs", "clubs", "clubs", "clubs", "clubs", "diamonds", "diamonds",
+ "diamonds", "diamonds", "diamonds", "diamonds", "diamonds", "diamonds",
. + "diamonds", "diamonds", "diamonds", "diamonds", "diamonds", "hearts",
» You could create this data frame +
. + "hearts", "hearts", "hearts", "hearts", "hearts"),
+ value = c(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 13, 12, 11, 10, 9, 8,
Wlth data - f ramel bUt |OOk at the + 7, 6, 5, 4, 3, 2, 1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 13, 12, 11,
s 10, 9, 8, 7, 6, 5, 4, 3, 2, 1)
+ )

typing involved! You need to write
three vectors, each with 52 elements.



R Objects

Loading data

You should avoid typing large data sets
in by hand whenever possible.

Console Terminal

e
. . . R R4.4.1 . ~/
Typing invites typos and errors. - deck <- data. FraneC | o |
i+ face = c("king", "queen", "jack", "ten", "nine", "eight", "seven", "six",
+ "five", "four", "three", "two", "ace", "king", "queen", "jack", "ten",
o o + "nine", "eight", "seven", "six", "five", "four", "three", "two", "ace",
It is always better to acquire large data |
+ "four", "three", "two", "ace", "king", "queen", "jack", "ten", "nine",
. + "eight", "seven", "six", "five", "four", "three", "two", "ace"),
Sets aS a COmleter f||e° + suit = c("spades", "spades", "spades", "spades", "spades", "spades",
o+ "spades", "spades", "spades", "spades", "spades", "spades", "spades",
+ "clubs", "clubs", "clubs", "clubs", "clubs", "clubs", "clubs", "clubs",
Y h k R d h f.l d i+ "clubs", "clubs", "clubs", "clubs", "clubs", "diamonds", "diamonds",
Ou Can t en aS tO rea t e I e an + "diamonds", "diamonds", "diamonds", "diamonds", "diamonds", "diamonds",
. + "diamonds", "diamonds", "diamonds", "diamonds", "diamonds", "hearts",
Store the Contents aS an ObJeCt. + "hearts", "hearts", "hearts"”, "hearts", "hearts", "hearts", "hearts",
+ "hearts", "hearts", "hearts", "hearts", "hearts"),
+ value = c(13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 13, 12, 11, 10, 9, 8,
/ o o + 7, 6, 5, 4, 3, 2, 1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 13, 12, 11,
’ll send you a file that contains a data : 10,9, 8,7, 6 5 4 3, 2, D
+ )

frame of playing-card information, so
don’t worry about typing in the code.



R Objects

Loading data

« You can load the deck data frame from
the file Data on the page course.

« deck.csvis a comma-separated values
file, or CSV for short.

« CSVs are plain-text files, which means
you can open them in a text editor.

deck
face  suit value
king | spades 13
queen | spades 12
jack | spades 11
ten spades 10
nine | spades 9
eight | spades 8
seven | spades 14
SIX spades 6
five spades 5




R Objects

Loading data

Grid ~

To load a plain-text file into R, click the
Import Dataset icon in RStudio

Length Size Value

RStudio will ask you to select the file
you want to import, then it will open a
wizard to help you import the data

Use the wizard to tell RStudio what
name to give the data set.

Tell RStudio which character the data
set uses as a separator, which character
represents decimals, whether the data
set comes with a row of column names.



R Objects

Loading data

To load a plain-text file into R, click the
Import Dataset icon in RStudio

RStudio will ask you to select the file
you want to import, then it will open a
wizard to help you import the data

Use the wizard to tell RStudio what
name to give the data set.

Tell RStudio which character the data
set uses as a separator, which character
represents decimals, whether the data
set comes with a row of column names.

!

)

L B S

\J

p S A

Import Dataset

Name

deck

Heading *)Yes __No
Separator Comma
Decimal Period

Quote Double quote (")
na.strings NA

Strings as factors

Input File

"face","suit","value"
"King","Spades",13
"Queen","Spades",12
"Jack","Spades",11
"Ten","Spades", 10
"Nine","Spades",9
"Eight","Spades",8
"Seven", "Spades",7

"Six","Spades",6

"Five","Spades",5
"Four","Spades" ,4
"Three", "Spades”,3

"Two", "Spades", 2
'ln :g" llqnad&qll 1

Data Frame

face suit value
King Spades 13
Queen Spades 12
Jack Spades 11
Ten Spades 10
Nine Spades 9
Eight Spades 8
Seven Spades 7
Six Spades 6
Five Spades 5
Four Spades 4
Three Spades 3
Two Spades 2
Ace Snades 1

. Import |

Cancel

all



R Objects

Loading data

« RStudio will read in the data and save
it to a data frame.

Environment  Histery
* Import Danaset - " Cewr Grid =

% Clebal Ervvrenment ~

- K
g

Name

& Type Length Size Vale
deck data.fr. 3 3.1 KB 52 obs. of 3 var.

f ¥ ¥ &€ E
¢ 6 6 & =

- RStudio will also open a data viewer,
SO YOU canh see your new data in a
spreadsheet format.

8 w» N

f ¥ ¥
e & o

1
ades
des
des
sdes
des
des
des
ades
des
des
des
ey

L R L I R

F T ¥
6 6 &6 & 6 &

Flles Moty Packages Melp Viewer

N Lxpornt»

. |f all worked well, your file should e v ot o o o o e

R is a collaborative project with mony contributors.

. . . Type ‘contributors()’ for more information and
a p pea r I n a IeW a O u IO. ‘citation()’ on how to cite R or R packages in publications.

Type "demo()' for some demos, "help()' for on-line help, or
"help.start()' for an HTML browser interface to help.
Type "q()' to quit R.

[(Workspace loaded from ~/.RData)

> deck <« reod.csv("~/Dropbox (RStudio)/DANR/data/deck,.csv™)
>  View(deck)



R Objects

Saving data

- Before we go any further, let’s save a
copy of deck as a new .csv file.

- That way you can email it to a colleague,
store it on a thumb drive, or openitin a |
. R R4.4.1 - /cloud/project/
dlﬁerent prograim. > write.csv(deck, file = "cards.csv", row.names = FALSE)|

Console Terminal Render Background Jobs —

« You can save any data frame in R to
a .csv file with the command write.csv



R Objects

Saving data

« To see where your working directory is,
run getwd ()

« To change the location of your working
directory, visit Session > Set Working

Console Terminal Render Background Jobs (e
Directory > Choose Directory in the RStudio S R4.4.1 - /cloud/project/
menu bar > write.csv(deck, file = "cards.csv", row.names = FALSE)l

« You can customize the save process
with write.csv’s large set of optional
arguments (see ?write. csv for details).



R Objects

Saving data

 there are three arguments that you should
use every time you run write.csv.

- add the argument row.names = FALSE.

ThlS Wl” prevent R frOm addlng s CO|Umn Console Terminal Render Background Jobs ——
R R4.4.1 - /cloud/project/

Of numbel‘S at the Start Of YOUF data > write.csv(deck, file = "cards.csv", row.names = FALSE)l

frame.

« You now have a virtual deck of cards to
work with.



