
STSCI 3740/5740 Machine Learning and Data Mining

Dr. Nayel Bettache Homework 1, due Oct 10, 11:59pm

Problem 1 (6 points)

1. Express Var(X1 − X2) through the variances and covariances of X1, X2 (assuming all
variances exist).

2. Assume that X1, ..., Xn are i.i.d. real-valued random variables with finite variances. Show
that

Var
( 1

n

n∑
i=1

Xi

)
=

1

n
Var(X1).

3. Assume that X,Y are independent random variables with E[X] = 0,E[Y ] = 1,Var(X) =
1,Var(Y ) = 2. Compute E[(3X + Y )(5Y + 2X − 1)]

Problem 2 (8 points)

Solve Problem 1 of Chapter 2.4, Problem 1 of Chapter 3.7 and Problem 1 of Chapter 4.8
in the textbook Introduction to Statistical Learning(second edition).

Problem 3 (12 points)

Solve Problem 9 of Chapter 2.4, Problems 8 and 9 of chapter 3.7 and Problem 14 of chap-
ter 4.8 in the textbook Introduction to Statistical Learning. Choose either R or Python. The
data set Auto can be found on the webpage of the course

You may follow the code in Chapter 2.3.4 (ISLR) or Chapter 2.3.7 (ISLP) to load data. (For
this problem you shall submit a R notebook or a Python notebook explaining
every single step of your code.)

Problem 4 (5 points)
This question is required for STSCI 5740. It is optional for 3740, that means you can have
some bonus points, if you get the correct answer.

Classification is a very important research area and has been extensively studied from a theo-
retical aspect. In many research papers, the focus is on how to bound the so-called excess
risk of a classifier. In this question, we will first define the excess risk, and then study some
mathematical properties of the excess risk.

We will follow the notation in the lectures. Assume that Y takes values in {0, 1}. Based on
the lectures, we know the Bayes classifier is f∗(x) = 1 if p1(x) = P (Y = 1|X = x) > 1/2 and
f∗(x) = 0 otherwise. (I use a slightly different notation f∗ to denote the Bayes classifier rather
than f̂ in the slides).
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Since p1(x) depends on the unknown data distribution, the Bayes classifier is not implemen-
table in practice. One way to construct a practical classifier is the following. Let us first use
some model or algorithm to estimate p1(x). We call this estimator as p̂1(x) ∈ [0, 1]. Then we
can plug-in the Bayes classifier. So, we have the following classifier f̂(x) = 1 if p̂1(x) > 1/2 and
f̂(x) = 0 otherwise.

Now, we define the excess risk of the classifier f̂(x) as

R(f̂)−R(f∗),

where R(f) = P (Y ̸= f(X)) is the misclassification error of f (unconditioning on X). In words,
the excess risk is the difference between the misclassification errors of f̂ and the Bayes classifier.
Since the Bayes classifier has the smallest misclassification error (shown in the class), we know
the excess risk is always nonnegative. We can claim that f̂ is a good classifier, if its excess risk
is close to 0. So, for any given classifier f̂ , we would like to know its excess risk or its upper
bound at least.

Given the above background, please prove the following inequality regarding the excess risk

R(f̂)−R(f∗) ≤ 2E|p̂1(X)− p1(X)|.

(If you take some more advanced ML courses in the future, you will see this is an important
inequality.)

Hint: You may first prove the following identity

P (Y ̸= f̂(X))|X = x)− P (Y ̸= f∗(X))|X = x) = |2p1(x)− 1| × I(f∗(x) ̸= f̂(x)),

where I() is the indicator function.
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Problem 5 (4 Bonus points)
This exercise is optional for everyone.

Assume that we have the regression model

Y = f(X) + ε,

where ε is independent of X and E(ε) = 0, E(ε2) = σ2. Assume that the training data
(x1, y1), ..., (xn, yn) are used to construct an estimate f̂ of f . Given a new random vector
(X,Y ) (i.e., test data independent of the training data),

1. Show that

E[(f(X)− f̂(X))2|X = x] = V(f̂(X)|X = x) + E
([

E[f̂(X)|X = x]− f(X)
]2

|X = x

)
.

(1)
Hint: You may start from

E[(f(X)−f̂(X))2|X = x] = E
[(

f(X)− E[f̂(X)|X = x] + E[f̂(X)|X = x]− f̂(X)
)2

|X = x

]
.

Then do the square expansion.

2. Show that

E[(Y − f̂(X))2|X = x] = V(f̂(X)|X = x)+E
([

E[f̂(X)|X = x]− f(X)
]2

|X = x

)
+ σ2.

Hint: The proof follows from the similar derivations shown in the lecture together with
the equation (1) above.

3. Explain the bias-variance trade-off based on the above equation.

4. Explain the difference between training MSE and test MSE. Can expected test MSE be
smaller than σ2?

Problem 6 (3 Bonus points)
This exercise is optional for everyone.

Consider a classification problem. Assume that the response variable Y can only take value in
C = {1, 2, 3}. For a fixed x0, assume that the conditional probability of Y given X = x0 follows

P (Y = 1|X = x0) = 0.6; P (Y = 2|X = x0) = 0.3; P (Y = 3|X = x0) = 0.1.

1. Derive the Bayes classifier at X = x0.

2. Derive the corresponding Bayes error rate.

3. Consider a naive classifier f̂(x0), called random guessing. That is we use the computer to
randomly pick one number from C = {1, 2, 3} with equal probability as the label for x0.
Compute the expected test error rate of this classifier. Show that the Bayes error rate is
smaller than the expected test error rate for random guessing.
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