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1 Introduction

Least Squares Regression (LSR) is a fundamental statistical technique used
to estimate the parameters of a model by minimizing the sum of the squared
differences between observed values and the corresponding predicted values.
The method provides a simple and computationally efficient way to fit linear
models to data.

The key properties of LSR are rooted in its optimality and simplicity:

• Unbiased Estimation: The Least Squares Estimator (LSE) provides
unbiased estimates of the model parameters under the assumption of
homoscedasticity, meaning the variance of the errors is constant across
all observations.

• Minimum Variance: According to the Gauss-Markov Theorem, among
all linear and unbiased estimators, LSE has the smallest possible vari-
ance. This makes it an efficient estimator, particularly in the presence
of normally distributed errors.

• Linear Relationship: LSR assumes a linear relationship between the
dependent variable and one or more independent variables. This re-
lationship can be expressed as a linear combination of the predictors,
with the goal of finding the best-fitting line or hyperplane.

• Error Minimization: The method minimizes the sum of squared er-
rors (SSE), which is the sum of the squared differences between the ob-
served values and the predicted values. By focusing on squared errors,
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the method heavily penalizes large deviations, which ensures that out-
liers have a stronger influence on the final model compared to smaller
deviations.

• Interpretability: The parameters estimated by LSR, such as the in-
tercept and slope(s), have clear interpretations in terms of the relation-
ship between the predictor(s) and the response variable. This makes
LSR an easily interpretable method for understanding data patterns.

• Sensitivity to Outliers: While LSR is computationally efficient and
easy to implement, it is sensitive to outliers. Large deviations from the
trendline disproportionately affect the sum of squared errors, poten-
tially leading to biased or misleading estimates.

LSR is widely used in a variety of fields, including economics, biology,
engineering, and social sciences, to model relationships between variables
and make predictions. This document explores four specific cases of regres-
sion: (1) Horizontal Line Regression, (2) Regression Through the Origin, (3)
Simple Linear Regression, and (4) Multiple Linear Regression, detailing the
derivation of the LSE for each model.

2 Horizontal Line Regression

Horizontal line regression, also called the ideal measurement model, assumes
no independent variables. The model is:

yi = µ+ ϵi

The LSE minimizes the sum of squared errors (SSE):

minµ SSE = minµ

n∑
i=1

(yi − µ)2

To find the optimal value of µ, we take the derivative of the SSE with
respect to µ and set it to zero:

d

dµ

n∑
i=1

(yi − µ)2 = 0

Solving this, we get the LSE as the sample mean:
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µ = ȳ

Thus, the regression equation is:

y = ȳ

3 Regression Through the Origin

In regression through the origin, the intercept is constrained to zero, and the
model is:

yi = axi

The objective is to minimize the SSE:

mina SSE = mina

n∑
i=1

(yi − axi)
2

Taking the derivative with respect to a and setting it to zero:

n∑
i=1

(yi − axi)xi = 0

Solving for a, we obtain:

a =

∑n
i=1 xiyi∑n
i=1 x

2
i

Thus, the LSE for regression through the origin is:

y =

∑n
i=1 xiyi∑n
i=1 x

2
i

· x

4 Simple Linear Regression

In simple linear regression, the model includes both an intercept and a slope:

yi = axi + b

The SSE to be minimized is:
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mina,b SSE = mina,b

n∑
i=1

(yi − axi − b)2

We first find the optimal b by taking the partial derivative of the SSE
with respect to b and setting it to zero:

∂

∂b

n∑
i=1

(yi − axi − b)2 = 0

Solving, we find:

b = ȳ − ax̄

Next, we substitute b into the SSE and solve for a, yielding:

a =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

Thus, the regression equation is:

y = ax+ b

5 Multiple Linear Regression

For multiple linear regression, the model is represented in matrix form:

y = Xβ + ϵ

where X is the design matrix, β is the vector of parameters, and ϵ is the
error vector.

The LSE is found by minimizing:

minβ (y −Xβ)T (y −Xβ)

Taking the derivative and setting it to zero gives:

XTXβ̂ = XTy

Solving for β̂:

β̂ = (XTX)−1XTy
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