
Lecture 7: Classification (Textbook 4.1-4.3)
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Classification

Qualitative variables take values in an unordered set C , such as:

eye color∈ {brown,blue,green},
email∈ {spam, ham}.

Our goal: Given a feature vector X and a qualitative response Y taking
values in the set C , we aim to build a function C (X ) that uses the feature
vector X to predict Y ; i.e. C (X ) ∈ C .

In this chapter we discuss three of the most widely-used classifiers: logistic
regression, linear discriminant analysis, and K-nearest neighbors.
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Default Data

It shows the annual incomes and monthly credit card balances of a number of
individuals. The individuals who defaulted on their credit card payments are
shown in orange, and those who did not are shown in blue.
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Why Not Linear Regression?

In this case of a binary outcome, linear discriminant analysis, which is
related but different from linear regression, does a good job as a classifier.

The least squared method can estimate E (Y |X = x) = Pr(Y = 1|X = x),
we might think that regression is perfect for this task.

However, linear regression might produce probabilities less than zero or
bigger than one. Logistic regression is more appropriate.

4 / 32



Linear versus Logistic Regression

Left: Estimated probability of default using linear regression. Some estimated
probabilities are negative! The orange points represents the 0/1 values coded
for default (No or Yes). Right: Predicted probabilities of default using logistic
regression. All probabilities lie between 0 and 1.
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Logistic Regression

How to model the relationship between p(X ) = Pr(Y = 1|X ) and X?

A linear regression may estimate p(X ) < 0 or p(X ) > 1.

Logistic regression model p(X ) by the logistic function,

p(X ) =
eβ0+β1X

1 + eβ0+β1X
,

It is easy to see that no matter what values β0, β1, or X take, p(X ) will
have values between 0 and 1.

Note that p(X ) is Not a linear function X or β.
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Logistic Regression

A bit of rearrangement gives

p(X )

1− p(X )︸ ︷︷ ︸
odds

= eβ0+β1X , log
[ p(X )

1− p(X )

]
︸ ︷︷ ︸

log−odds

= β0 + β1X .

The odds takes value between 0 and +∞, and the log odds takes value
between −∞ and +∞.

β1 represents the change of log odds by increasing X by one unit, since

β1 = log
[ p(X + 1)

1− p(X + 1)

]
− log

[ p(X )

1− p(X )

]
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Maximum Likelihood

Given training data (x1, y1), ..., (xn, yn), we use maximum likelihood to
estimate the parameters.

The maximum likelihood principle is that we seek the estimates of parameters
such that the fitted probability corresponds as closely as possible to the
individual’s observed outcome.

The likelihood function of the observed data is

ℓ(β0, β1) =
∏
i :yi=1

p(xi )
∏
i :yi=0

(1− p(xi )).

We pick β0 and β1 to maximize the likelihood of the observed data.

Most statistical packages can fit logistic regression models by maximum
likelihood. In R we use the glm function.
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Inference

Consider again the Default data (fitted by maximum likelihood):

Z-statistic is similar to t-statistic in regression, and is defined as

β̂1/SE (β̂1).

It produces p-value for testing the null hypothesis H0 : β1 = 0. A large
(absolute) value of the z-statistic or small p-value indicates evidence against H0.
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Making Predictions

Consider the Default data with student as predictor. What is our estimated
probability of default for a student? To fit the model, we create a dummy
variable that takes on a value of 1 for students and 0 for non-students.
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Multiple Logistic Regression

Consider the Default data using balance, income, and student status as
predictors.

Why is coefficient for student negative, while it was positive before?

11 / 32



Confounding

The results obtained using one predictor may be quite different from those
obtained using multiple predictors, especially when there is correlation among
the predictors. The phenomenon is known as confounding.

Students tend to have higher balances than non-students, so their marginal
default rate is higher than for non-students.

But for each level of balance, students default less than non-students.

Multiple logistic regression can tease this out.
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