
Lecture 8: Classification (Textbook 4.4)
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Default Data

It shows the annual incomes and monthly credit card balances of a number of
individuals. The individuals who defaulted on their credit card payments are
shown in orange, and those who did not are shown in blue.
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Linear Discriminant Analysis

Logistic regression involves directly modeling P(Y = k|X = x).

Here, linear discriminant analysis is to model the distribution of X in
each of the classes separately, and then use Bayes’ theorem to flip things
around and obtain P(Y = k |X = x). The Bayes’ theorem is

P(Y = k|X = x) = P(X = x |Y = k)P(Y = k)/P(X = x).

We usually assume the distribution of X in each of the classes to be normal
distributions.
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Why not Logistic Regression

When the classes are well-separated, the parameter estimates for the
logistic regression model are surprisingly unstable. Linear discriminant
analysis does not suffer from this problem.

If n is small and the distribution of the predictors X is approximately
normal in each of the classes, the linear discriminant model is again more
stable than the logistic regression model.

Linear discriminant analysis is more convenient when we have more than
two response classes. (Multinomial logistic regression and proportional
odds model)
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Using Bayes’ Theorem for Classification

Recall that the Bayes’ theorem is

P(Y = k|X = x) = P(X = x |Y = k)P(Y = k)/P(X = x).

We can slightly rewrite it as

P(Y = k |X = x) =
πk fk(x)∑K
l=1 πl fl(x)

,

πk is the prior probability that a randomly chosen observation comes from
the kth class, i.e. P(Y = k).

fk(X ) = P(X = x |Y = k) denotes the density function of X for an
observation that comes from the kth class.

pk(x) = P(Y = k |X = x) is called posterior probability. It is the
probability that the observation belongs to the kth class, given the
predictor value for that observation.

In the ideal case, we classify a new point according to which posterior
probability is highest.
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Linear Discriminant Analysis for p = 1

We assume that fk(x) is normal, which takes the form

fk(x) =
1√
2πσk

e
− 1

2σ2
k

(x−µk )
2

,

where µk and σ2
k are the mean and variance parameters for the kth class.

We assume all σk = σ are the same.

Plugging this into Bayes’ formula, we get pk(x) = P(Y = k|X = x) as

7 / 16



Linear Discriminant Analysis for p = 1

To classify at the value X = x , we need to see which k has the largest
pk(x).

Taking logs, and discarding terms that do not depend on k, the Bayes
classifier is to assign x to the class with the largest

δk(x) = x
µk

σ2
− µ2

k

2σ2
+ log πk .

Note that δk(x) is a linear function of x . That is why it is called linear
discriminant analysis (LDA).

If K = 2 and π1 = π2, then the Bayes decision boundary corresponds to

x =
µ1 + µ2

2
.
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Discriminant functions

Given training data, we estimate µk , and σ by

µ̂k =
1

nk

∑
i :yi=k

xi

σ̂2 =
1

n − K

K∑
k=1

∑
i :yi=k

(xi − µ̂k)
2,

where nk is the number of training observations in the kth class. We also
estimate πk by

π̂k = nk/n.

Plugging the estimates into δk(x), we get

δ̂k(x) = x
µ̂k

σ̂2
− µ̂2

k

2σ̂2
+ log π̂k ,

which is called discriminant function.

LDA just assigns x to the class with the largest δ̂k(x).
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Linear Discriminant Analysis for p > 1

We now extend the LDA classifier to the case of multiple predictors
X = (X1, ...,Xp).

Recall that the posterior probability has the form

P(Y = k |X = x) =
πk fk(x)∑K
l=1 πl fl(x)

,

Now, we assume X |Y = k follows a multivariate normal distribution
N(µk ,Σ),

fk(x) =
1

(2π)p/2|Σ|1/2
e−

1
2 (x−µk )

TΣ−1(x−µk ).

Similarly, we assign x to the class with the largest

δk(x) = xTΣ−1µk −
1

2
µT
k Σ

−1µk + log πk .

The Bayes decision boundaries are the set of x for which δk(x) = δl(x) for
k ̸= l . Again, the boundaries are collection of straight lines, since δk(x) is
linear in x .
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Example

There are three classes (orange, green and blue) with two predictors X1 and X2.
Dashed lines are the Bayes decision boundaries. Solid lines are their estimates
based on the LDA.
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LDA on the Default Data

Our goal is predict whether or not an individual will default on the basis of
credit card balance.

The training error rate is (23 + 252)/10000 = 2.75%. For a credit card

company that is trying to identify high-risk individuals, an error rate of
252/333 = 75.7% among individuals who default is unacceptable.
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Types of Errors

False positive rate (FPR): The fraction of negative examples that are
classified as positive – 23/9667 = 0.2% in default data.

False negative rate (FNR): The fraction of positive examples that are
classified as negative – 75.7% in default data.

The false negative rate is too high.

We can achieve better balance of FPR and FNR by varying the threshold

P(default=yes | X=x) > threshold,

for some threshold different from 0.5.
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Trade-off between FPR and FNR
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More Terminology

This defines sensitivity and specificity.
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ROC Curve

The ROC plot displays both FPR and TPR. A ROC curve for the LDA classifer
on the Default data. It traces out two types of error as we vary the threshold
value for the posterior probability of default. The actual thresholds are not
shown. The ideal ROC curve hugs the top left corner. The dotted line
represents the “no information” classifer; this is what we would expect if student
status and credit card balance are not associated with probability of default.
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