
Lecture 9: Classification (Textbook 4.4 and 4.5)
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Overview

Recall that Bayes theorem provides

P(Y = k |X = x) =
πk fk(x)∑K
l=1 πl fl(x)

,

For each class k ∈ [K ],

πk is easily estimated using the proportion of observation in classe k.

fk is hard to estimate (p dimensional density function)

LDA : fk is the density of Np(µk ,Σ)

QDA : fk is the density of Np(µk ,Σk)

Naive Bayes : the p predictors are independent (fk(x) =
∏p

j=1 fjk(xj))

Lot of technical details given during the lecture !
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Quadratic Discriminant Analysis

In QDA, the Bayes classifier assigns an observation X = x to the class for which

δk(x) = −1

2
xTΣ−1

k x + xTΣ−1
k µk −

1

2
µT
k Σ

−1
k µk + log πk −

1

2
log |Σk |.

is largest. So, the decision boundary is nonlinear (quadratic).

The Bayes (purple dashed), LDA (black dotted), and QDA (green solid)
decision boundaries under two scenarios.
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Naive Bayes

Assumes features are independent in each class.

Useful when p is large, and so multivariate methods like QDA and even LDA
break down.

Under Gaussian distributions, naive Bayes assumes each Σk is diagonal.
The decision boundary is determined by

δk(x) = −1

2

p∑
j=1

(xj − µkj)
2

σ2
kj

+ log πk .

It is easy to extend it to mixed features (quantitative and categorical).

Despite strong assumptions, naive Bayes often produces good classification
results.
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Logistic Regression versus LDA

For a two-class problem, one can show that for LDA

log
( p1(x)

1− p1(x)

)
= log

(p1(x)
p2(x)

)
= c0 + c1x1 + ...+ cpxp,

which has the same form as logistic regression.

The difference is in how the parameters are estimated.

Logistic regression uses the conditional likelihood based on P(Y |X ) (known
as discriminative learning).

LDA uses the full likelihood based on P(X ,Y ) (known as generative
learning).

Despite these differences, in practice the results are often very similar.
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K-Nearest Neighbors (KNN)

K-nearest neighbors (KNN) classifier directly estimates P(Y = j |X = x0) by

1

K

∑
i∈N0

I (yi = j),

where N0 is the set of K points in the training data that are closest to x0. KNN
estimate P(Y = j |X = x0) as the fraction of points with label j in N0.

(KNN with K = 3).
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Effect of K

With K = 1, the decision boundary is overly flexible, while with K = 100 it is
not sufficiently flexible. Again, this represents the bias variance trade-off. The
Bayes decision boundary is shown as a purple dashed line.
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Comparison

K classes
An obseravtion x is assigned to the class that maximizes P[Y = k X = x ].
It is similar than asssuming class K is the baseline and maximizing the log odds

log

[
P[Y = k X = x ]

P[Y = K X = x ]

]

LDA: log odds is LINEAR in x

QDA: log odds is QUADRATIC in x

Naive Bayes: log odds is a generalized additive model
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Comparison bis

LDA is a special case of QDA

LDA is a special case of Naive Bayes (not trivial !)

QDA is NOT a special case of Naive Bayes (and vice versa)
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Which is better ?

LDA outperforms MLR (Multinomial logistic regression) when Gaussian
assumption holds

KNN dominates LDA and MLR when the decision boundary is non linear
and n ≫ p

QDA dominates LDA and MLR when the decision boundary is non linear
and n ≳ p

KNN doesn’t tell which regressor is important

Read the textbok if you did not attend the lectures !
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