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Machine Learning (ML) vs Stat

”Artificial intelligence (or machine learning) is actually statistics, but it uses a
very gorgeous rhetoric. It is actually statistics. A lot of formulas are very old.
But all artificial intelligence uses statistics to solve problems.”

-Thomas J. Sargent, Nobel Prize winner in Economics, 2018
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”Artificial intelligence (or machine learning) is actually statistics, but it uses a
very gorgeous rhetoric. It is actually statistics. A lot of formulas are very old.
But all artificial intelligence uses statistics to solve problems.”

-Thomas J. Sargent, Nobel Prize winner in Economics, 2018

”When you are fundraising, it is AI. When you are hiring, it is ML. When you
are implementing, it is logistic regression.”

-everyone on Twitter ever
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Machine Learning (ML) vs Stat
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An Overview of Statistical Learning

Statistical learning involves tools for understanding data.

Methods are categorized as:

Supervised learning: Builds models to predict or estimate an output based
on input data.
Unsupervised learning: Discovers relationships and structures in data
without an output variable.

Applications span across diverse fields such as business, medicine,
astrophysics, and public policy.

3 / 13



An Overview of Statistical Learning

Statistical learning involves tools for understanding data.

Methods are categorized as:

Supervised learning: Builds models to predict or estimate an output based
on input data.
Unsupervised learning: Discovers relationships and structures in data
without an output variable.

Applications span across diverse fields such as business, medicine,
astrophysics, and public policy.

3 / 13



An Overview of Statistical Learning

Statistical learning involves tools for understanding data.

Methods are categorized as:

Supervised learning: Builds models to predict or estimate an output based
on input data.

Unsupervised learning: Discovers relationships and structures in data
without an output variable.

Applications span across diverse fields such as business, medicine,
astrophysics, and public policy.

3 / 13



An Overview of Statistical Learning

Statistical learning involves tools for understanding data.

Methods are categorized as:

Supervised learning: Builds models to predict or estimate an output based
on input data.
Unsupervised learning: Discovers relationships and structures in data
without an output variable.

Applications span across diverse fields such as business, medicine,
astrophysics, and public policy.

3 / 13



An Overview of Statistical Learning

Statistical learning involves tools for understanding data.

Methods are categorized as:

Supervised learning: Builds models to predict or estimate an output based
on input data.
Unsupervised learning: Discovers relationships and structures in data
without an output variable.

Applications span across diverse fields such as business, medicine,
astrophysics, and public policy.

3 / 13



Wage Data

Wage data set: Analyzes factors influencing wages for men in the Atlantic
region of the U.S.

Focus on relationships between:

Age and wage: Wages increase with age, then decline after age 60.
Year and wage: Slight wage increase between 2003 and 2009.
Education and wage: Higher education correlates with higher wages.
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Wage Data

Wage data set: Analyzes factors influencing wages for men in the Atlantic
region of the U.S.
Age alone isn’t a precise predictor due to high variability.

Best wage predictions combine age, education, and year.
Linear regression can be used to predict wage from this data set (next
chapter).
Ideally, we should predict wage in a way that accounts for the non-linear
relationship between wage and age.
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Stock Market Data

Smarket data set: Analyzes daily movements of the S&P 500 index over
a 5-year period.

Goal: Predict index mvmt based on the previous days’ percentage changes.
Left-hand panel: Boxplots for the previous day’s percentage change.
Little difference between days the market increased vs. decreased,
suggesting no simple predictive strategy.
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Regression vs Classification

Regression Problem:

Predicts a continuous or quantitative output.
Example: Wage data set where the goal is to predict wages based on factors
like age and education.

Classification Problem:

Predicts a categorical or qualitative outcome.
Example: Smarket data set, predicting whether the S&P 500 index will
increase (Up) or decrease (Down) on a given day.
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Gene Expression Data

NCI60 data set: Contains 6,830 gene expression measurements for 64
cancer cell lines.

Goal: Determine clusters among cell lines based on gene expression data.
We apply Principal Component Analysis (PCA)
Reduces 6,830 measurements to two principal components (Z1 and Z2).
Allows visualization of potential clusters in a 2D space.
Some information loss is expected, but clustering is now visually assessable.
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Gene Expression Data

Left: Rep. of the NCI60 gene expression data set in a 2D space.

Each point corresponds to one of the 64 cell lines

Suggests at least four clusters among the cell lines.

Right: Same but displays 14 cancer types using distinct colored symbols.

Shows that cell lines with the same cancer type are often near each other.
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Supervised vs Unsupervised problems

Wage and Smarket data sets contain both input and output variables.

Another important class of problems involves situations in which we only
observe input variables, with no corresponding output.

Example: Marketing setting where customers are grouped based on
demographic data.

Goal: Identify groups or clusters of similar individuals based on observed
characteristics.
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Supervised learning problem

The dataset contains n observations.

For each observation, there is an outcome measurement, usually called
dependent variable or response or target and noted yi where i = 1, . . . , n.

In the regression problem, yi is quantitative (e.g wage).
In the classification problem, yi takes values in a finite, unordered set (e.g.
up/down).

For each observation, there is a vector of p predictor measurements, usually
called inputs or regressors or covariates or features or independent variables
and denoted xi where i = 1, . . . , n (e.g. age, year, education level).

The observed training data (x1, y1), . . . , (xn, yn) are usually called samples
or instances.

Based on the observed data we would like to perform:

Prediction: accurately predict future outcome.
Estimation: understand how inputs affect the outcome.
Model selection: find the best model for the outcome or which inputs affect
the outcome.
Inference: assess the quality of our predictions.
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Unsupervised learning problem

The dataset contains n observations.

For each observation, there is no outcome measurement

For each observation, there is a vector of p predictor measurements
denoted xi where i = 1, . . . , n (e.g.gene expression measurements).

The objective is here more fuzzy. We can be interested on

Finding groups of samples that behave similarly.
Find linear combinations of features with the most variation.
Other

The model assessment problem is difficult as it is hard to know how well
you are doing.
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Simple to sophisticated methods

It is important to understand the ideas behind the various techniques, in
order to know how and when to use them.

One has to understand the simpler methods first, in order to grasp the
more sophisticated ones.

It is important to accurately assess the performance of a method, to know
how well or how badly it is working. Simpler methods sometimes perform
as well as fancier ones.

This is an exciting research area, having important applications in science,
industry and finance.

Statistical learning is a fundamental ingredient in the training of a modern
data scientist.
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Brief History of Statistical Learning

Though the term statistical learning is fairly new, many of the concepts
that underlie the field were developed long ago.

Early XIXth centurey: the method of least squares was developed,
implementing the earliest form of what is now known as linear regression.
Linear regression is used for predicting quantitative values.
1936: In order to predict qualitative values, linear discriminant analysis was
proposed.
1940s: various authors put forth an alternative approach, logistic regression.
Early 1970s: the term generalized linear model was developed to describe
an entire class of statistical learning methods that include both linear and
logistic regression as special cases.
Late 1970s: more techniques for learning from data were available.
However, they were almost exclusively linear methods be- cause fitting
non-linear relationships was computationally difficult at the time.
Mid 1980s, classification and regression trees were developed, followed
shortly by generalized additive models.
1980s: Neural networks gained popularity., and support vector machines
arose in the 1990s.
1990s: Support vector machines arose.
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