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Linear Regression and the Population Regression Line

The true relationship between X and Y is assumed to be Y = f (X ) + ϵ for
some unknown function f , where ϵ is a mean-zero random error term.

If f is approximated by a linear function, then Y = β0 + β1X + ϵ where β0

is the intercept and β1 is the slope.

The model defines the population regression line, which is the best linear
approximation to the true relationship between X and Y.

The least squares regression coefficient estimates characterize the least
squares line, which can be computed using the observed data.

The true relationship is generally not known, but the least squares line can
always be computed.

Different data sets generated from the same true model result in slightly
different least squares lines, but the unobserved population regression line
does not change.

The concept of the population regression line and the least squares line is
an extension of the standard statistical approach of using information from
a sample to estimate characteristics of a large population.

The standard error of the estimate can be used to quantify the accuracy of
the estimate.
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Linear Regression and the Population Regression Line

Left: The red line represents the true relationship, f (X ) = 2 + 3X , i.e. the
population regression line. The blue line is the least squares line; it is the least
squares estimate for f (X ) based on the observed data, shown in black. Right:
The population regression line (red), and the least squares line (dark blue). Ten
least squares lines are shown (light blue), each computed on the basis of a
separate random set of observations. Each least squares line is different, but on
average, the least squares lines are quite close to the population regression line.
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Population Regression Line vs. Least Squares Line

The population regression line is the true relationship between X and Y.

The least squares line is an estimate of the population regression line based
on the observed data.

The least squares line is computed using the least squares coefficient
estimates.

The average of many least squares lines, each estimated from a separate
data set, is close to the true population regression line.
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Bias and Standard Error

An unbiased estimator does not systematically over- or under-estimate the
true parameter.

The least squares coefficient estimates are unbiased.

The standard error of the estimate can be used to quantify the accuracy of
the estimate.

The standard error of the estimate is a measure of the variability of the
estimate.

How can we quantify the quality of the estimation of β0 and β1 ?
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Analogy: Estimation of the population mean

Consider a random variable Y with mean µ.

Unfortunately, µ is unknown, but we do have access to n observations from
Y : y1, . . . , yn.

A reasonable estimate is µ̂ = ȳ , the empirical mean.

In general µ̂ ̸= µ but µ̂ is ”close” to µ if we have enough data.

How accurate is the sample mean µ̂ as an estimate of µ?

We answer this question by computing the standard error of µ̂, denoted
SE (µ̂).

We do the same for β̂0 and β̂1.

SE (β̂0) = σ2

1

n
+

(x̄)2

n∑
i=1

(xi − x̄2)

 and SE (β̂1) =
σ2

n∑
i=1

(xi − x̄2)
,

where σ2 = V[ϵ].

For these formulas to be strictly valid, we need to assume that the errors
for each observation have common variance and are uncorrelated.
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Inference: Confidence Interval

Instead of ”point” estimators β̂0 and β̂1 we want to have intervals such
that β0 ∈ [m0,M0] and β1 ∈ [m1,M1] with high probability.

For δ in(0, 1) we want to find m0(δ) and M0(δ) such that

P (β0 ∈ [m0(δ),M0(δ)]) ≥ 1− δ.

A 95% confidence interval is defined as a range of values such that with
95% probability, the range will contain the true unknown value of the
parameter.
Standard errors can be used to compute confidence intervals.
A 95% confidence interval for β1 has the form

[β̂1 − 2 · SE (β̂1), β̂1 + 2 · SE (β̂1)].

A 95% confidence interval for β0 has the form

[β̂0 − 2 · SE (β̂0), β̂0 + 2 · SE (β̂0)].

Here, the constant 2 is used for simplicity.
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Inference: Hypothesis Tests

Instead of ”estimating” the parameters we may be interested in testing a
hypothesis, e.g., is there a relationship between X and Y ?

Standard errors can also be used to perform hypothesis tests on the
coefficients.

The most common hypothesis test involves testing the null hypothesis of

H0 : There is no relationship between X and Y

versus alternative hypothesis

Ha : There is some relationship between X and Y.

Mathematically, this corresponds to testing

H0 : β1 = 0 versus Ha : β1 ̸= 0,

since if β1 = 0 then the model becomes Y = β0 + ϵ, and X is not
associated with Y .
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Inference: Hypothesis Tests

Intuitively, if β̂1 is far from 0, we are more confident that β1 ̸= 0.

How far is enough to reject the null hypothesis ?

This depends on the accuracy of β̂1, i.e. on SE (β̂1).

Mathematically, we compute a t-statistic

t =
β̂1 − 0

SE (β̂1)
,

where a large value of |t| tends to reject the null hypothesis.

This has a t-distribution with n − 2 degrees of freedom, when β1 = 0.

Using statistical software, it is easy to compute the probability of observing
any value equal to |t| or larger when β1 = 0. We call this probability the
p-value.

A p-value measures the probability of obtaining the observed results,
assuming that the null hypothesis is true.

In most applications, we reject the null hypothesis if the p-value ≤ 0.05.

We reject the null hypothesis ̸= we accept the alternative !
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Results for Advertising Data

For the Advertising data, coefficients of the least squares model for the
regression of number of units sold on TV advertising budget. An increase of
$1,000 in the TV advertising budget is associated with an increase in sales by
around 50 units. (Recall that the sales variable is in thousands of units, and the
TV variable is in thousands of dollars.)
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Assessing the Accuracy of the Model: RSE

Recall from the model that associated with each observation is an error
term ϵ.

Due to the presence of these error terms, even if we knew the true β0 and
β1 we would not be able to perfectly predict Y from X .

The residual standard error is an estimate of the standard deviation of ϵ:

RSE =
√
RSS/(n − 2) =

√√√√ 1

n − 2

n∑
i=1

(yi − ŷi )2,

where the residual sum of squares is RSS =
∑n

i=1(yi − ŷi )
2.

The RSE is considered a measure of the lack of fit of the model to the data.

If the predictions obtained using the model are very close to the true
outcome values, RSE will be small, and we can conclude that the model
fits the data very well.
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Results for Advertising Data

For the Advertising data, more information about the least squares model for
the regression of number of units sold on TV advertising budget.
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For the Advertising data, more information about the least squares model for
the regression of number of units sold on TV advertising budget.

RSE is 3.26 means actual sales deviate from the true regression line by ≈ 3,260
units, on average.
If the model were correct and the true values of the unknown coefficients were
known exactly, any prediction of sales on the basis of TV would still be off by
about 3,260 units on average.
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Assessing the Accuracy of the Model: R2

The RSE provides an absolute measure of lack of fit of the model to the
data.

Since it is measured in the units of Y , it is not always clear what
constitutes a good RSE.

R-squared or fraction of variance explained is

R2 =
TSS − RSS

TSS
∈ [0, 1],

where TSS =
∑n

i=1(yi − ȳ)2 is the total sum of squares.

TSS measures the total variance in the response Y , and can be thought of
as the amount of variability inherent in the response before the regression is
performed.

RSS measures the amount of variability that is left unexplained after
performing the regression.
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R2: Interpretation

R2 measures the prop. of variability in Y that can be explained using X .

An R2 close to 1 indicates that a large proportion of the variability in the
response has been explained by the regression.

An R2 close to 0 indicates that the regression does not explain much of the
variability in the response; this might occur because the linear model is
wrong, or the error variance is high.

The R2 statistic has an interpretational advantage over the RSE, since
unlike the RSE, it always lies between 0 and 1.

However, it can still be challenging to determine what is a good R2.

Large value of R2 does NOT mean the model fits the data well. It favors
more flexible models, which may overfit the data! .
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Multiple Linear Regression

Simple linear regression is a useful approach for predicting a response on
the basis of a single predictor variable.

In practice we often have more than one predictor.

One option is to run separate simple linear regressions, each of which uses
a different predictor.

However, the approach of fitting a separate simple linear regression model
for each predictor is not entirely satisfactory.

Why ?
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Multiple Linear Regression

We now consider

Y = β0 + β1X1 + β2X2 + . . .+ βpXp + ϵ,

where Xj represents the jth predictor and βj quantifies the association
between that variable and the response.

We interpret βj as the average effect on Y of a one unit increase in Xj ,
holding all other predictors fixed. In the advertising example, the model
becomes

sales = β0 + β1 × TV + β2 × radio + β3 × newspaper + ϵ.

Compared to the simple linear regression,

sales = α0 + α1 × TV + ϵ′,

in general β1 ̸= α1, since α1 represents the average effect on sales of a one
unit increase in TV.
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Multiple Linear Regression

In a three-dimensional setting, with two predictors and one response, the least
squares regression line becomes a plane. The plane is chosen to minimize the
sum of the squared vertical distances between each observation (shown in red)
and the plane.
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Some Important Questions

Is at least one of the predictors X1,X2, ...,Xp useful in predicting the
response?

Do all the predictors help to explain Y , or is only a subset of the predictors
useful?

How well does the model fit the data?

Given a set of predictor values, what response value should we predict, and
how accurate is our prediction?
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Relationship Between Response and Predictors?

In the simple linear regression: test if β0 = 0.

In the multiple linear regression: Test the null hypothesis

H0 : β1 = β2 = ... = βp = 0 versus Ha : at least one βj is not-zero.

This hypothesis test is performed by computing the F-statistic

F =
(TSS − RSS)/p

RSS/(n − p − 1)
,

where recall that TSS =
∑n

i=1(yi − ȳ)2 and RSS =
∑n

i=1(yi − ŷi )
2.

A very large value of F favors Ha.
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Deciding on Important Variables

If we conclude that at least one of the predictors is related to the response,
then it is natural to wonder which are the guilty ones!

It is possible that all of the predictors are associated with the response, but
it is more often the case that the response is only associated with a subset
of the predictors.

This task is called variable selection.

The most direct approach is best subsets regression: we compute the
least squares fit for all possible subsets and then choose between them
based on some criterion that balances training error with model size.

The criterion include Mallow’s Cp, Akaike information criterion (AIC),
Bayesian information criterion (BIC), and adjusted R2. These will be
discussed later.

However we often can’t examine all possible models, since they are 2p of
them; for example when p = 40 there are over a billion models! Instead we
need an automated approach that searches through a subset of them. We
discuss two commonly use approaches next.

17 / 23



Deciding on Important Variables

If we conclude that at least one of the predictors is related to the response,
then it is natural to wonder which are the guilty ones!

It is possible that all of the predictors are associated with the response, but
it is more often the case that the response is only associated with a subset
of the predictors.

This task is called variable selection.

The most direct approach is best subsets regression: we compute the
least squares fit for all possible subsets and then choose between them
based on some criterion that balances training error with model size.

The criterion include Mallow’s Cp, Akaike information criterion (AIC),
Bayesian information criterion (BIC), and adjusted R2. These will be
discussed later.

However we often can’t examine all possible models, since they are 2p of
them; for example when p = 40 there are over a billion models! Instead we
need an automated approach that searches through a subset of them. We
discuss two commonly use approaches next.

17 / 23



Deciding on Important Variables

If we conclude that at least one of the predictors is related to the response,
then it is natural to wonder which are the guilty ones!

It is possible that all of the predictors are associated with the response, but
it is more often the case that the response is only associated with a subset
of the predictors.

This task is called variable selection.

The most direct approach is best subsets regression: we compute the
least squares fit for all possible subsets and then choose between them
based on some criterion that balances training error with model size.

The criterion include Mallow’s Cp, Akaike information criterion (AIC),
Bayesian information criterion (BIC), and adjusted R2. These will be
discussed later.

However we often can’t examine all possible models, since they are 2p of
them; for example when p = 40 there are over a billion models! Instead we
need an automated approach that searches through a subset of them. We
discuss two commonly use approaches next.

17 / 23



Deciding on Important Variables

If we conclude that at least one of the predictors is related to the response,
then it is natural to wonder which are the guilty ones!

It is possible that all of the predictors are associated with the response, but
it is more often the case that the response is only associated with a subset
of the predictors.

This task is called variable selection.

The most direct approach is best subsets regression: we compute the
least squares fit for all possible subsets and then choose between them
based on some criterion that balances training error with model size.

The criterion include Mallow’s Cp, Akaike information criterion (AIC),
Bayesian information criterion (BIC), and adjusted R2. These will be
discussed later.

However we often can’t examine all possible models, since they are 2p of
them; for example when p = 40 there are over a billion models! Instead we
need an automated approach that searches through a subset of them. We
discuss two commonly use approaches next.

17 / 23



Deciding on Important Variables

If we conclude that at least one of the predictors is related to the response,
then it is natural to wonder which are the guilty ones!

It is possible that all of the predictors are associated with the response, but
it is more often the case that the response is only associated with a subset
of the predictors.

This task is called variable selection.

The most direct approach is best subsets regression: we compute the
least squares fit for all possible subsets and then choose between them
based on some criterion that balances training error with model size.

The criterion include Mallow’s Cp, Akaike information criterion (AIC),
Bayesian information criterion (BIC), and adjusted R2. These will be
discussed later.

However we often can’t examine all possible models, since they are 2p of
them; for example when p = 40 there are over a billion models! Instead we
need an automated approach that searches through a subset of them. We
discuss two commonly use approaches next.

17 / 23



Deciding on Important Variables

If we conclude that at least one of the predictors is related to the response,
then it is natural to wonder which are the guilty ones!

It is possible that all of the predictors are associated with the response, but
it is more often the case that the response is only associated with a subset
of the predictors.

This task is called variable selection.

The most direct approach is best subsets regression: we compute the
least squares fit for all possible subsets and then choose between them
based on some criterion that balances training error with model size.

The criterion include Mallow’s Cp, Akaike information criterion (AIC),
Bayesian information criterion (BIC), and adjusted R2. These will be
discussed later.

However we often can’t examine all possible models, since they are 2p of
them; for example when p = 40 there are over a billion models! Instead we
need an automated approach that searches through a subset of them. We
discuss two commonly use approaches next.

17 / 23



Forward selection

Begin with the null model– a model that contains an intercept but no
predictors.

Fit p simple linear regressions and add to the null model the variable that
results in the lowest RSS.

Add to that model the variable that results in the lowest RSS amongst all
two-variable models.

Continue until some stopping rule is satisfied, for example when all
remaining variables have a p-value above some threshold.
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Backward selection

Start with all variables in the model.

Remove the variable with the largest p-value – that is, the variable that is
the least statistically significant.

he new (p − 1) –variable model is fit, and the variable with the largest
p-value is removed.

Continue until a stopping rule is reached. For instance, we may stop when
all remaining variables have a significant p-value defined by some
significance threshold.
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Mixed selection

We start with no variables in the model.

As with forward selection, we add variables one-by-one.

After adding a new variable, we check whether the p-value for one of the
variables in the model rises above a certain threshold. If yes, we remove
that variable from the model.

Continue these forward and backward steps until all variables in the model
have a sufficiently low p-value, and all variables outside the model would
have a large p-value if added to the model.
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Comparison

Backward selection cannot be used if p > n, while forward selection can
always be used.

Forward selection is a greedy approach, and might include variables early
that later become redundant.

Mixed selection can remedy this.
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Model Fit

RSE and R2 can be still used for multiple linear regression.

R2 favors more flexible models, as R2 will always increase when more
variables are added to the model, even if those variables are only weakly
associated with the response.
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Prediction

A 95% Prediction interval for Y refers to that the interval of this form will
contain the true value Y with 95% probability. Let

Ŷ = f̂ (X ) = β̂0 + β̂1X1 + ...+ β̂pXp.

We have
Y − Ŷ = f (X )− f̂ (X ) + ϵ.

To construct a prediction interval, we need to first get a confidence interval for
f (X )− f̂ (X ) and then add the variance of ϵ to the confidence interval.

Thus, the prediction interval is usually substantially wider than the confidence
interval.
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