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Other Considerations in the Regression Model

Qualitative Predictors

Some predictors are not quantitative, but rather qualitative, taking on a
discrete set of values.

These are also referred to as categorical predictors or factor variables.

For example, consider the credit card data, which includes qualitative
variables such as gender, student status, marital status, and ethnicity.

These qualitative variables can take on specific categories, such as
male/female, student/non-student, etc.

How can we incorporate these qualitative predictors into our regression
model?
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Credit Card Data

The Credit data set contains information about balance, age, cards, education,
income, limit, and rating for a number of potential customers.
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Qualitative Predictors

Example: investigate differences in credit card balance between males and
females, ignoring the other variables. We create a new dummy variable
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Qualitative Predictors

Example: investigate differences in credit card balance between males and
females, ignoring the other variables. We create a new dummy variable

β0 can be interpreted as the average credit card balance among males.
β0 + β1 as the average credit card balance among females

β1 as the average difference in credit card balance between males and females.
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Qualitative Predictors

Example: investigate differences in credit card balance between males and
females, ignoring the other variables. We create a new dummy variable

The decision to code 0 for males and 1 for females is arbitrary and has no effect
on the regression ft, but does alter the interpretation of the coefficients.
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Qualitative Predictors with More Than Two Levels

With more than two levels, we create additional dummy variables. For example,
for the ethnicity variable we create two dummy variables. The first could be

5 / 14



Qualitative Predictors with More Than Two Levels

Then both of these variables can be used in the regression equation, in order to
obtain the model

There will always be one fewer dummy variable than the number of levels. The
level with no dummy variable – African American in this example – is known as
the baseline.
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Qualitative Predictors with More Than Two Levels

Then both of these variables can be used in the regression equation, in order to
obtain the model

There will always be one fewer dummy variable than the number of levels. The
level with no dummy variable – African American in this example – is known as
the baseline.

Interpretation of β0, β1 and β2 ?
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Credit Card Data

Interpretation: The Asian category will have 18.69 less debt than the African
American category, and that the Caucasian category will have 12.50 less debt
than the African American category.
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Assumptions of the Standard Linear Regression Model

Additivity and Linearity Assumptions

The standard linear regression model provides interpretable results and
works well on many real-world problems.

It makes restrictive assumptions, often violated in practice.

Two key assumptions are additivity and linearity.

Additivity: The association between a predictor Xj and the response Y
does not depend on the other predictors.

Linearity: The change in Y associated with a one-unit change in Xj is
constant, regardless of the value of Xj .

In later chapters, we explore methods that relax these assumptions.
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Extensions of the Linear Model

Removing the additive assumption: interactions and nonlinearity.

Consider the model

Y = β0 + β1X1 + β2X2 + ϵ.

Regardless of the value of X2, a one-unit increase in X1 will lead to a
β1-unit increase in Y .

Consider the model with interaction terms

Y = β0 + β1X1 + β2X2 + β3X1X2 + ϵ

= β0 + (β1 + β3X2)X1 + β2X2 + ϵ

= β0 + β̃1X1 + β2X2 + ϵ,

where β̃1 = β1 + β3X2. Since β̃1 changes with X2, the effect of X1 on Y is
no longer constant: adjusting X2 will change the impact of X1 on Y .
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Interaction Effects in the Advertising Data

Synergy and Interaction Effects

In our previous analysis, both TV and radio advertising were associated
with sales.

The linear model assumed that the effect of one medium is independent of
the other.

However, this may not be correct. Spending on radio may increase the
effectiveness of TV ads.

sales = β0 + β1TV + β2radio + β3(TV × radio) + ϵ

= β0 + (β1 + β3radio)× TV + β2radio + ϵ.
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Advertising Data
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Advertising Data

Interpretation: an increase in TV advertising of $1,000 is associated with
increased sales of (β1 + β3radio)× 1000 = 19 + 1.1× radio units.
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Advertising Data

Interpretation: an increase in TV advertising of $1,000 is associated with
increased sales of (β1 + β3radio)× 1000 = 19 + 1.1× radio units.

Interpretation of β1, β2, β3? Read pages 89-90 of the textbook
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Hierarchy

The hierarchy principle:

If we include an interaction X1 × X2 in a model, we should also include the
main effects X1 and X2, even if the p-values associated with their
coefficients are not significant.

The rationale for this principle is that interactions are hard to interpret in a
model without main effects.

Specifically, the interaction terms also contain main effects, if the model
has no main effect terms.
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Non-linear Relationships

For a number of cars, mpg and horsepower are shown. The linear regression
(orange); the linear regression fit for a model that includes horsepower2 (blue);
the linear regression fit for a model that includes all polynomials of horsepower
up to fifth-degree (green).
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Non-linear Relationships

The figure suggests that

mpg = β0 + β1horsepower + β2horsepower
2 + ϵ,

may provide a better fit.

Some general comments:

A simple approach for incorporating non-linear associations in a linear
model is to include transformed versions of the predictors in the model.

It is still a linear model! Can be fitted by least squared with
X1 = horsepower , and X2 = horsepower2.
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