Linear Algebra Refresher

Nayel Bettache

Department of Statistical Science, Cornell University

Vector - We note $x \in \mathbb{R}^n$ a vector with *n* entries, where $x_i \in \mathbb{R}$ is the *i*th entry:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

Vector - We note $x \in \mathbb{R}^n$ a vector with *n* entries, where $x_i \in \mathbb{R}$ is the *i*th entry:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

Matrix - We note $A \in \mathbb{R}^{m \times n}$ a matrix with *m* rows and *n* columns, where $A_{i,j} \in \mathbb{R}$ is the entry located in the *i*th row and *j*th column

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Notations

Matrix - We note $A \in \mathbb{R}^{m \times n}$ a matrix with *m* rows and *n* columns, where $A_{i,j} \in \mathbb{R}$ is the entry located in the *i*th row and *j*th column

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Identity matrix - The identity matrix $I \in \mathbb{R}^{n \times n}$ is a square matrix with ones in its diagonal and zero everywhere else

$$I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

Notations

Identity matrix - The identity matrix $I \in \mathbb{R}^{n \times n}$ is a square matrix with ones in its diagonal and zero everywhere else

$$I = \left(\begin{array}{ccccc} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{array}\right)$$

Diagonal matrix - A diagonal matrix $D \in \mathbb{R}^{n \times n}$ is a square matrix with nonzero values in its diagonal and zero everywhere else:

$$D = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & d_n \end{pmatrix}$$

Vector-vector multiplication - here are two types of vector-vector products: \boldsymbol{v}

 $\textbf{Vector-vector}\ \textbf{multiplication}\ \textbf{-}\ here\ are\ two\ types\ of\ vector-vector\ products:\ v$

• inner product: for $x, y \in \mathbb{R}^n$, we have:

$$x^T y = \sum_{i=1}^n x_i y_i \in \mathbb{R}$$

Vector-vector multiplication - here are two types of vector-vector products: v

• inner product: for $x, y \in \mathbb{R}^n$, we have:

$$x^{\mathsf{T}}y = \sum_{i=1}^{n} x_i y_i \in \mathbb{R}$$

• outer product: for $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, we have:

$$xy^{T} = \begin{pmatrix} x_{1}y_{1} & \cdots & x_{1}y_{n} \\ \vdots & \vdots \\ x_{m}y_{1} & \cdots & x_{m}y_{n} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Matrix-vector multiplication - The product of matrix $A \in \mathbb{R}^{m \times n}$ and vector $x \in \mathbb{R}^n$ is a vector y of size \mathbb{R}^m , such that for all $i \in \{1, \ldots, m\}$:

$$y_i = \sum_{k=1}^n A_{ik} x_k.$$

Matrix-vector multiplication - The product of matrix $A \in \mathbb{R}^{m \times n}$ and vector $x \in \mathbb{R}^n$ is a vector y of size \mathbb{R}^m , such that for all $i \in \{1, \ldots, m\}$:

$$y_i = \sum_{k=1}^n A_{ik} x_k.$$

Matrix-matrix multiplication - The product of matrix $A \in \mathbb{R}^{m \times n}$ and matrix $B \in \mathbb{R}^{n \times p}$ is a matrix C of size $\mathbb{R}^{m \times p}$, such that for all $i \in \{1, ..., m\}$ and all $j \in \{1, ..., p\}$:

$$C_{ij}=\sum_{k=1}^{n}A_{ik}B_{kj}.$$

Transpose - The transpose of a matrix is an operator which flips a matrix over its diagonal. Formally, the transpose of a matrix $A \in \mathbb{R}^{m \times n}$, noted A^T , is defined, for all $i \in \{1, ..., m\}$ and all $j \in \{1, ..., n\}$, as

 $[A^T]_{ij}=A_{ji}.$

Transpose - The transpose of a matrix is an operator which flips a matrix over its diagonal. Formally, the transpose of a matrix $A \in \mathbb{R}^{m \times n}$, noted A^T , is defined, for all $i \in \{1, ..., m\}$ and all $j \in \{1, ..., n\}$, as

$$[A^{T}]_{ij} = A_{ji}$$

Inverse - $A \in \mathbb{R}^{n \times n}$ is said to be invertible if there exists $B \in \mathbb{R}^{n \times n}$ such that $AB = BA = I_n$. If this is the case, then the matrix B is uniquely determined by A, and is called the inverse of A, denoted A^{-1} .

$$AA^{-1} = A^{-1}A = I_n$$

Operations

Transpose - The transpose of a matrix is an operator which flips a matrix over its diagonal. Formally, the transpose of a matrix $A \in \mathbb{R}^{m \times n}$, noted A^T , is defined, for all $i \in \{1, ..., m\}$ and all $j \in \{1, ..., n\}$, as

$$[A^T]_{ij}=A_{ji}.$$

Inverse - $A \in \mathbb{R}^{n \times n}$ is said to be invertible if there exists $B \in \mathbb{R}^{n \times n}$ such that $AB = BA = I_n$. If this is the case, then the matrix B is uniquely determined by A, and is called the inverse of A, denoted A^{-1} .

$$AA^{-1} = A^{-1}A = I_n.$$

Trace - The trace of a square matrix $A \in \mathbb{R}^{n \times n}$, noted tr(A), is the sum of its diagonal entries

$$\mathsf{tr}(A) = \sum_{i=1} A_{ii}.$$

n

Operations

Transpose - The transpose of a matrix is an operator which flips a matrix over its diagonal. Formally, the transpose of a matrix $A \in \mathbb{R}^{m \times n}$, noted A^T , is defined, for all $i \in \{1, \ldots, m\}$ and all $j \in \{1, \ldots, n\}$, as

$$[A^{\mathcal{T}}]_{ij}=A_{ji}.$$

Inverse - $A \in \mathbb{R}^{n \times n}$ is said to be invertible if there exists $B \in \mathbb{R}^{n \times n}$ such that $AB = BA = I_n$. If this is the case, then the matrix B is uniquely determined by A, and is called the inverse of A, denoted A^{-1} .

$$AA^{-1}=A^{-1}A=I_n.$$

Trace - The trace of a square matrix $A \in \mathbb{R}^{n \times n}$, noted tr(A), is the sum of its diagonal entries

$$\operatorname{tr}(A) = \sum_{i=1}^n A_{ii}.$$

Determinant - The determinant of a matrix A, commonly denoted det(A), characterizes some properties of the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible.

For matrices A, B, we have

$$\operatorname{tr}(A^{T}) = \operatorname{tr}(A)$$
 and $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

For matrices A, B, we have

$$\operatorname{tr}(A^{T}) = \operatorname{tr}(A)$$
 and $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

For invertible matrices A, B, we have:

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Results

For matrices A, B, we have

$$\operatorname{tr}(A^T) = \operatorname{tr}(A)$$
 and $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

For invertible matrices A, B, we have:

$$(AB)^{-1} = B^{-1}A^{-1}.$$

For matrices A, B, we have

 $(AB)^T = B^T A^T.$

Results

For matrices A, B, we have

$$\operatorname{tr}(A^{T}) = \operatorname{tr}(A)$$
 and $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

For invertible matrices A, B, we have:

$$(AB)^{-1} = B^{-1}A^{-1}.$$

For matrices A, B, we have

$$(AB)^T = B^T A^T.$$

For square matrices A, B, we have

 $det(A^T) = det(A)$ and det(AB) = det(A) det(B).