Linear Algebra Refresher

Nayel Bettache

Department of Statistical Science, Cornell University

Vector - We note $x \in \mathbb{R}^n$ a vector with *n* entries, where $x_i \in \mathbb{R}$ is the *i*th entry:

$$
x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n
$$

Vector - We note $x \in \mathbb{R}^n$ a vector with n entries, where $x_i \in \mathbb{R}$ is the i^{th} entry:

$$
x = \left(\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}\right) \in \mathbb{R}^n
$$

Matrix - We note $A \in \mathbb{R}^{m \times n}$ a matrix with m rows and n columns, where $A_{i,j} \in \mathbb{R}$ is the entry located in the i^{th} row and j^{th} column

$$
A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} \in \mathbb{R}^{m \times n}
$$

Notations

Matrix - We note $A \in \mathbb{R}^{m \times n}$ a matrix with m rows and n columns, where $A_{i,j} \in \mathbb{R}$ is the entry located in the i^{th} row and j^{th} column

$$
A = \left(\begin{array}{ccc} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{array}\right) \in \mathbb{R}^{m \times n}
$$

Identity matrix - The identity matrix $I \in \mathbb{R}^{n \times n}$ is a square matrix with ones in its diagonal and zero everywhere else

$$
I = \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{array} \right)
$$

Notations

Identity matrix - The identity matrix $I \in \mathbb{R}^{n \times n}$ is a square matrix with ones in its diagonal and zero everywhere else

$$
I = \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{array} \right)
$$

Diagonal matrix - A diagonal matrix $D \in \mathbb{R}^{n \times n}$ is a square matrix with nonzero values in its diagonal and zero everywhere else:

$$
D = \left(\begin{array}{cccc} d_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & d_n \end{array} \right)
$$

Vector-vector multiplication - here are two types of vector-vector products: v

Vector-vector multiplication - here are two types of vector-vector products: v

inner product: for $x, y \in \mathbb{R}^n$, we have:

$$
x^T y = \sum_{i=1}^n x_i y_i \in \mathbb{R}
$$

Vector-vector multiplication - here are two types of vector-vector products: v

inner product: for $x, y \in \mathbb{R}^n$, we have:

$$
x^T y = \sum_{i=1}^n x_i y_i \in \mathbb{R}
$$

outer product: for $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, we have:

$$
xy^T = \left(\begin{array}{ccc} x_1y_1 & \cdots & x_1y_n \\ \vdots & & \vdots \\ x_my_1 & \cdots & x_my_n \end{array}\right) \in \mathbb{R}^{m \times n}
$$

Matrix-vector multiplication - The product of matrix $A \in \mathbb{R}^{m \times n}$ and vector $x \in \mathbb{R}^n$ is a vector y of size \mathbb{R}^m , such that for all $i \in \{1, \ldots, m\}$:

$$
y_i = \sum_{k=1}^n A_{ik} x_k.
$$

Matrix-vector multiplication - The product of matrix $A \in \mathbb{R}^{m \times n}$ and vector $x \in \mathbb{R}^n$ is a vector y of size \mathbb{R}^m , such that for all $i \in \{1, \ldots, m\}$:

$$
y_i=\sum_{k=1}^n A_{ik}x_k.
$$

Matrix-matrix multiplication - The product of matrix $A \in \mathbb{R}^{m \times n}$ and matrix $B \in \mathbb{R}^{n \times p}$ is a matrix C of size $\mathbb{R}^{m \times p}$, such that for all $i \in \{1, \ldots, m\}$ and all $j \in \{1, \ldots, p\}$:

$$
C_{ij}=\sum_{k=1}^n A_{ik}B_{kj}.
$$

Transpose - The transpose of a matrix is an operator which flips a matrix over its diagonal. Formally, the transpose of a matrix $A \in \mathbb{R}^{m \times n}$, noted $A^{\mathcal{T}}$, is defined, for all $i \in \{1, \ldots, m\}$ and all $j \in \{1, \ldots, n\}$, as

 $[A^{\mathcal{T}}]_{ij} = A_{ji}.$

Transpose - The transpose of a matrix is an operator which flips a matrix over its diagonal. Formally, the transpose of a matrix $A \in \mathbb{R}^{m \times n}$, noted $A^{\mathcal{T}}$, is defined, for all $i \in \{1, \ldots, m\}$ and all $j \in \{1, \ldots, n\}$, as

$$
[A^{\mathsf{T}}]_{ij}=A_{ji}.
$$

Inverse - $A \in \mathbb{R}^{n \times n}$ is said to be invertible if there exists $B \in \mathbb{R}^{n \times n}$ such that $AB = BA = I_n$. If this is the case, then the matrix B is uniquely determined by A, and is called the inverse of A, denoted A^{-1} .

$$
AA^{-1}=A^{-1}A=I_n.
$$

Operations

Transpose - The transpose of a matrix is an operator which flips a matrix over its diagonal. Formally, the transpose of a matrix $A \in \mathbb{R}^{m \times n}$, noted $A^{\mathcal{T}}$, is defined, for all $i \in \{1, \ldots, m\}$ and all $j \in \{1, \ldots, n\}$, as

$$
[A^T]_{ij}=A_{ji}.
$$

Inverse - $A \in \mathbb{R}^{n \times n}$ is said to be invertible if there exists $B \in \mathbb{R}^{n \times n}$ such that $AB = BA = I_n$. If this is the case, then the matrix B is uniquely determined by A, and is called the inverse of A, denoted A^{-1} .

$$
AA^{-1}=A^{-1}A=I_n.
$$

Trace - The trace of a square matrix $A \in \mathbb{R}^{n \times n}$, noted tr(A), is the sum of its diagonal entries

$$
\mathrm{tr}(A)=\sum_{i=1}^n A_{ii}.
$$

Operations

Transpose - The transpose of a matrix is an operator which flips a matrix over its diagonal. Formally, the transpose of a matrix $A \in \mathbb{R}^{m \times n}$, noted $A^{\mathcal{T}}$, is defined, for all $i \in \{1, \ldots, m\}$ and all $j \in \{1, \ldots, n\}$, as

$$
[A^T]_{ij}=A_{ji}.
$$

Inverse - $A \in \mathbb{R}^{n \times n}$ is said to be invertible if there exists $B \in \mathbb{R}^{n \times n}$ such that $AB = BA = I_n$. If this is the case, then the matrix B is uniquely determined by A, and is called the inverse of A, denoted A^{-1} .

$$
AA^{-1}=A^{-1}A=I_n.
$$

Trace - The trace of a square matrix $A \in \mathbb{R}^{n \times n}$, noted tr(A), is the sum of its diagonal entries

$$
\mathrm{tr}(A)=\sum_{i=1}^n A_{ii}.
$$

Determinant - The determinant of a matrix A, commonly denoted $det(A)$, characterizes some properties of the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible.

For matrices A, B , we have

$$
\operatorname{tr}(A^T) = \operatorname{tr}(A) \quad \text{and} \quad \operatorname{tr}(AB) = \operatorname{tr}(BA).
$$

For matrices A, B , we have

$$
\operatorname{tr}(A^T) = \operatorname{tr}(A) \quad \text{and} \quad \operatorname{tr}(AB) = \operatorname{tr}(BA).
$$

For invertible matrices A, B , we have:

$$
(AB)^{-1} = B^{-1}A^{-1}.
$$

Results

For matrices A, B , we have

$$
\operatorname{tr}(A^T) = \operatorname{tr}(A) \quad \text{and} \quad \operatorname{tr}(AB) = \operatorname{tr}(BA).
$$

For invertible matrices A, B , we have:

$$
(AB)^{-1} = B^{-1}A^{-1}.
$$

For matrices A, B, we have

 $(AB)^T = B^T A^T$.

Results

For matrices A, B , we have

$$
\operatorname{tr}(A^T) = \operatorname{tr}(A) \quad \text{and} \quad \operatorname{tr}(AB) = \operatorname{tr}(BA).
$$

For invertible matrices A, B , we have:

$$
(AB)^{-1} = B^{-1}A^{-1}.
$$

For matrices A, B , we have

$$
(AB)^{T} = B^{T}A^{T}.
$$

For square matrices A, B , we have

 $det(A^T) = det(A)$ and $det(AB) = det(A) det(B)$.