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Improving LSE?

Recall the linear model is

Y = β0 + β1X1 + ...+ βpXp + ϵ.

How can we improve the model fitting ?
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Prediction Accuracy

Recall the linear model is

Y = β0 + β1X1 + ...+ βpXp + ϵ.

How can we improve the model fitting ?

Prediction Accuracy : If the true relationship is ≈ linear, LSE has low bias.

If n ≫ p, LSE has low variance.
If n ≳ p, LSE has large variance, possibly resulting in overftting.
If n < p, there is no longer a unique LSE: infinitely many solutions. They
show zero error on the training data, but very poor test set performance.
By constraining or shrinking the estimated coefficients, we can reduce the
variance at the cost of a negligible increase in bias.
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Model Interpretability

Recall the linear model is

Y = β0 + β1X1 + ...+ βpXp + ϵ.

How can we improve the model fitting ?

Model Interpretability : What if the model considers irrelevant variables ?

Leads to unnecessary complexity
By removing these variables: we can obtain a model that is more easily
interpreted.
Problem: LSE is unlikely to yield any coeffcient estimates that are exactly
zero.
Solution: feature selection or variable selection.
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Alternatives

Subset Selection: Identifying a subset of the p predictors that we believe to
be related to the response. Then fit LSE on these p predictors.

Shrinkage: Fitting a model involving all predictors but shrinking towards
zero the coefficients. This shrinkage (also known as regularization) has the
effect of reducing variance.

Dimension Reduction: This approach involves projecting the predictors into
a smaller M-dimensional subspace. Then these M projections are used as
predictors to fit a linear regression model by least squares.
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Subset Selection

Two methods for selecting subsets of predictors: best subset and stepwise
model selection.

For best subset selection, we need to compare 2p models.
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Best Subset Selection

Step 2 identifies the best model (on the training data) for each subset size,
in order to reduce the problem from one of 2p possible models to one of
p + 1 possible models.

Warning: RSS of these p + 1 models decreases monotonically, and the R2

increases monotonically, as the number of features included in the models
increases.

In Step 3, we should not use RSS or R2, because we want a model with
small test error not training error, and we can’t compare RSS or R2 on
models with ̸= number of predictors.

Best subset selection becomes computationally infeasible for large values of
p.

Best subset selection may also suffers from statistical problems when p is
large. The larger the search space, the higher the chance of finding models
that look good on the training data, even though they might not have any
predictive power on future data.
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Forward Stepwise Selection

Computationally efficient alternative to best subset selection.

For forward stepwise selection, we need to compare 1 null model plus p − k
models in iteration k . So, in total 1 +

∑p−1
k=0(p − k) = 1 + p(p + 1)/2 models

much fewer than 2p models.
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Forward Stepwise Selection

It has computational advantage over best subset selection.

It can be used in high-dimensional setting with n < p.

It is not guaranteed to find the best possible model out of all 2p models
containing subsets of the p predictors.
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The Credit Card Data
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Backward Stepwise Selection

For backward stepwise selection, we also compare 1 + p(p + 1)/2 models
much fewer than 2p models.

It only works when n > p.

It is not guaranteed to find the best possible model out of all 2p models
containing subsets of the p predictors.
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Estimating the Test Error

There are two common approaches:

We can directly estimate the test error, using either a validation set
approach or a cross-validation approach, as discussed in Chapter 5.

We can indirectly estimate test error by making an adjustment to the
training error to account for the bias due to overfitting. This class of
methods contain Cp, AIC, BIC, and adjusted R2.
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Cp, AIC, BIC, and adjusted R2

These techniques adjust the training error for the model size, and can be used
to select among a set of models with different numbers of variables.

Mallow’s Cp:

Cp =
1

n
(RSS + 2d σ̂2),

d is the total # of parameters in the model and σ̂2 is an estimate of var(ϵ).

Essentially, the Cp adds a penalty 2d σ̂2 to the training RSS to adjust for
the fact that the training error tends to underestimate the test error.

Cp tends to take on a small value for models with a low test error, so when
determining which of a set of models is best, we choose the model with the
lowest Cp value.
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Cp, AIC, BIC, and adjusted R2

AIC:
AIC = −2 log L+ 2d ,

L is the maximized value of the likelihood function for the estimated model.
In the linear model with Gaussian errors, AIC = Cp/σ̂

2. In this case, AIC is
proportional to Cp, which yields the same selected model.

BIC:
BIC = −2 log L+ (log n)d ,

BIC places a heavier penalty (log n)d on models with many variables, and
hence results in the selection of smaller models than AIC and Cp. For both
AIC and BIC, we select model with lowest values.
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Cp, AIC, BIC, and adjusted R2

Adjusted R2:

Adjusted R2 = 1− RSS/(n − d − 1)

TSS/(n − 1)
.

Unlike Cp, AIC, and BIC, for which a small value indicates a model with a
low test error, a large value of adjusted R2 indicates a model with a small
test error.

Maximizing the adjusted R2 is equivalent to minimizing RSS/(n − d − 1).
While RSS always decreases as the number of variables in the model
increases, RSS/(n − d − 1) may increase or decrease, due to the presence
of d in the denominator.

Unlike the R2 statistic, the adjusted R2 statistic pays a price for the
inclusion of unnecessary variables in the model.
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The Credit Card Data
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Validation and Cross-Validation

We compute the validation set error or the cross-validation error for each
model Mk under consideration, and then select the k for which the
resulting estimated test error is smallest.

This procedure has an advantage relative to AIC, BIC, Cp, and adjusted
R2, in that it provides a direct estimate of the test error, and doesn’t
require an estimate of the error variance.

It can also be used in a wider range of model selection tasks, even in cases
where it is hard to pinpoint the model degrees of freedom (e.g. the number
of predictors in the model) or hard to estimate the error variance.
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The Credit Card Data
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