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Shrinkage Methods

We can fit a model containing all p predictors using a technique that
constrains or regularizes the coefficient estimates, or equivalently, that
shrinks the coefficient estimates towards zero.

Shrinking the coefficient estimates can significantly reduce their variance.

The two best-known techniques for shrinking the regression coefficients
towards zero are ridge regression and the lasso.
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Ridge Regression

The least squares fitting procedure estimates β0, ..., βp using the values
that minimize

RSS =
n∑

i=1

(yi − β0 −
p∑

j=1

βjxij)
2.

The ridge regression estimates β0, ..., βp using the values that minimize

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

β2
j = RSS + λ

p∑
j=1

β2
j ,

where λ ≥ 0 is a tuning parameter, to be determined later.

The term λ
∑p

j=1 β
2
j is called a shrink penalty, which shrinks the estimates

of βi towards 0.

Ridge regression seeks coefficient estimates that making RSS small, and
meanwhile shrinks βj towards 0. The relative importance of two terms is
controlled by λ.
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More Comments

We usually denote the ridge regression estimator by β̂R
λ , because different λ

produces different estimators.

Selecting a good value for λ is critical. Later, we use cross-validation to
select λ. Some other criterions discussed in the previous section, such as
AIC, BIC can be also used.

We usually do not penalize β0.

The ridge regression coefficient estimates are not equivariant, due to the
sum of squared coefficients term in the penalty part of the ridge regression
objective function.

In practice, we recommend the standardized predictors, using the formula

x̃ij =
xij√

1
n

∑n
i=1(xij − x̄j)2

.

All of the standardized predictors will have a standard deviation of one.
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Credit Card Data Example

In the left-hand panel, each curve corresponds to the ridge regression
coefficient estimate for one of the ten variables, plotted as a function of λ.

The right-hand panel displays the same ridge coefficient estimates as the
left-hand panel, but we now display ∥β̂R

λ ∥2/∥β̂∥2, where β̂ denotes LSE.
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Ridge Regression Improves Over Least Squares

Squared bias (black), variance (green), and test mean squared error (purple) for
the ridge regression. The dashed lines indicate the minimum possible MSE.

Ridge regression also has substantial computational advantages over best subset
selection. How to apply ridge regression?
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The Lasso

Ridge regression does have one obvious disadvantage. Unlike subset
selection, which will generally select models that involve just a subset of
the variables, ridge regression will include all p predictors in the final
model. So, the model interpretation is more difficult.

The lasso coefficients, β̂L
λ, minimize the quantity

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

|βj | = RSS + λ

p∑
j=1

|βj |,

where λ ≥ 0 is a tuning parameter, to be determined later.

Different from the ridge regression which uses L2 penalty ∥β∥22, lasso uses
L1 penalty ∥β∥1.
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More Comments

As with ridge regression, the lasso shrinks the coefficient estimates towards
zero.

However, in the case of the lasso, the L1 penalty has the effect of forcing
some of the coefficient estimates to be exactly equal to zero when the
tuning parameter λ is sufficiently large.

Hence, much like best subset selection, the lasso performs variable
selection.

We say that the lasso yields sparse models – that is, models that involve
only a subset of the variables.

As in ridge regression, selecting a good value of λ for the lasso is critical;
cross-validation is again the method of choice.
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Credit Card Data Example
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Another Formulation for Ridge Regression and Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient estimates
that are exactly equal to zero?

The lasso and ridge regression coefficient estimates solve the problems
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The Variable Selection Property of the Lasso

The solid areas are the constraint regions, |β1|+ |β2| ≤ s and β2
1 + β2

2 ≤ s,
while the red ellipses are the contours of the RSS.
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Comparing the Lasso and Ridge Regression

Left: Plots of squared bias (black), variance (green), and test MSE (purple) for
the lasso on a simulated data set. Right: Comparison of squared bias, variance
and test MSE between lasso (solid) and ridge (dotted). Both are plotted against
their R2 on the training data, as a common form of indexing. The crosses in
both plots indicate the lasso model for which the MSE is smallest.
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Another Case

Lasso outperforms ridge regression when the true model is sparse.
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Conclusions

These two examples illustrate that neither ridge regression nor the lasso will
universally dominate the other.

In general, one might expect the lasso to perform better when the response
is a function of only a relatively small number of predictors.

As with ridge regression, when the least squares estimates have excessively
high variance, the lasso solution can yield a reduction in variance at the
expense of a small increase in bias, and consequently can generate more
accurate predictions.

Unlike ridge regression, the lasso performs variable selection, and hence
results in models that are easier to interpret.

There are very efficient algorithms for fitting both ridge and lasso models;
in both cases the entire coefficient paths can be computed with about the
same amount of work as a single least squares fit.
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