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The Ridge and Lasso

The ridge regression estimates β0, . . . , βp using the values that minimize

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

β2
j = RSS + λ

p∑
j=1

β2
j ,

The lasso coefficients, β̂L
λ, minimize the quantity

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

|βj | = RSS + λ

p∑
j=1

|βj |,

where λ ≥ 0 is a tuning parameter, to be determined later.
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A simple Example (Optional)

Assume that n = p and X is an identity matrix. We force the intercept
term = 0.

The usual least squares problem is to find β1, . . . , βp that minimize

p∑
j=1

(yj − βj)
2.

This gives estimator β̂j = yj .

The ridge regression is to find β1, . . . , βp that minimize

p∑
j=1

(yj − βj)
2 + λ

p∑
j=1

β2
j .

This gives estimator β̂R
j = yj/(1 + λ).
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A simple Example (Optional)

The lasso is to find β1, . . . , βp that minimize

p∑
j=1

(yj − βj)
2 + λ

p∑
j=1

|βj |.

This gives the following estimator

This is known as soft-thresholding.
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A simple Example (Optional)
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Selecting the Tuning Parameter

As for subset selection, for ridge regression and lasso we require a method
to determine which of the models under consideration is best.

That is, we require a method selecting a value for the tuning parameter λ
or equivalently, the value of the constraint s.

Cross-validation provides a simple way to tackle this problem. We choose a
grid of λ values, and compute the cross-validation error rate for each value
of λ.

We then select the tuning parameter value for which the cross-validation
error is smallest.

Finally, the model is re-fit using all of the available observations and the
selected value of the tuning parameter.
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Credit Card Data Example

Cross-validation errors that result from applying ridge regression to the Credit
data set with various value of λ.

7 / 9



Some Extensions

The ridge and Lasso regressions can be similarly applied to the logistic
regression.

There are many other different penalty functions. For instance, if we
suspect the model is nonlinear, we can add a quadratic terms, say

Y = β0 + β1X1 + β2X
2
1 + β3X2 + β4X

2
2 + ϵ.

We usually use the following Group Lasso estimator, which is the
minimizer of

RSS + λ(
√
β2
1 + β2

2 +
√

β2
3 + β2

4).

In this penalty, we view β1 and β2 (coefficient of X1 and X 2
1 ) as if they

belong to the same group. The group Lasso can shrink the parameters in
the same group (both β1 and β2) exactly to 0.
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Regression in High-Dimensional Data

High dimensional data refers to the data set that the number of features p
is much larger than the sample size n.

Because p is large, we have more extreme collinearity problems.

Least squares estimates do not exist if p > n or have high variance if
p ≈ n. Don’t use least squares for high dimensional data.

Many of the methods seen in this chapter, such as forward stepwise
selection, ridge regression, the lasso, and PCR, may still work in the
high-dimensional setting.

Among these methods, lasso is the most popular and convenient one.
Why? Computationally fast; perform feature selection.
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