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The Ridge and Lasso

@ The ridge regression estimates [, ..., 3, using the values that minimize
> ﬁo—Zﬂqu HZﬁz RS 4AY 7
i=1 Jj=1

@ The lasso coefficients, BA’): minimize the quantity

n P p P
D i—Bo— Y Bl + A 1B = RSS+ A 1B,

i=1 j=1 j=1 j=1

where A > 0 is a tuning parameter, to be determined later.
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A simple Example (Optional)

@ Assume that n = p and X is an identity matrix. We force the intercept
term = 0.

@ The usual least squares problem is to find 31, ..., 3, that minimize
P
> = B)
j=1
This gives estimator @j =Y.
@ The ridge regression is to find 1, ..., B, that minimize
P P

=B +AY_ B
j=1

Jj=1

This gives estimator BAJR =y/(1+A).
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A simple Example (Optional)

@ The lasso is to find 81, . . ., B, that minimize
P P
D= B+ A6
j=1 j=1

This gives the following estimator

yi — A2 iy >N/
BE =Sy + /2 ify; <—-\/2
0 if |y;| < M/2.
This is known as soft-thresholding.
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A simple Example (Optional)
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Selecting the Tuning Parameter

@ As for subset selection, for ridge regression and lasso we require a method
to determine which of the models under consideration is best.

@ That is, we require a method selecting a value for the tuning parameter A
or equivalently, the value of the constraint s.

@ Cross-validation provides a simple way to tackle this problem. We choose a
grid of A values, and compute the cross-validation error rate for each value
of A.

@ We then select the tuning parameter value for which the cross-validation
error is smallest.

o Finally, the model is re-fit using all of the available observations and the
selected value of the tuning parameter.
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Credit Card Data Example
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Cross-validation errors that result from applying ridge regression to the Credit

data set with various value of \.
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Some Extensions

@ The ridge and Lasso regressions can be similarly applied to the logistic
regression.

@ There are many other different penalty functions. For instance, if we
suspect the model is nonlinear, we can add a quadratic terms, say

Y = Bo+ BiX1 + BoXP + B3 Xz + BaX3 + €.

We usually use the following Group Lasso estimator, which is the
minimizer of

RSS +A(y/82 + B2 + /3 + 2).

In this penalty, we view 31 and (3, (coefficient of X; and X?) as if they
belong to the same group. The group Lasso can shrink the parameters in
the same group (both 1 and f3;) exactly to 0.
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Regression in High-Dimensional Data

@ High dimensional data refers to the data set that the number of features p
is much larger than the sample size n.

@ Because p is large, we have more extreme collinearity problems.

@ Least squares estimates do not exist if p > n or have high variance if
p ~ n. Don't use least squares for high dimensional data.

@ Many of the methods seen in this chapter, such as forward stepwise
selection, ridge regression, the lasso, and PCR, may still work in the
high-dimensional setting.

@ Among these methods, lasso is the most popular and convenient one.
Why? Computationally fast; perform feature selection.
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