Lecture 16: Linear Model Selection and Regularization

(Textbook 6.3 and 6.4)




Dimension Reduction Methods

@ The methods that we have discussed so far in this chapter have involved
fitting linear regression models, via least squares or a shrunken approach,
using the original predictors, X1, Xz, ..., X.

@ We now explore a class of approaches that transform the predictors and
then fit a least squares model using the transformed variables. We will refer
to these techniques as dimension reduction methods.
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Dimension Reduction Methods

o Let Zy, 25, ..., Zy represent M < p linear combinations of our original p
predictors,

P
Zm =Y $imX;,
j=1

for some constants ¢1m, ..., ppm, and m=1,..., M.

@ We then fit the linear regression

M
Y =00+ OnZm+e

m=1
using the ordinary least squares.

@ In the previous model, the regression coefficients are given by 6, ..., 0. If
the constants ¢ipm, ..., pm are chosen wisely, then such dimension reduction
approaches can often outperform OLS regression.

@ The term dimension reduction comes from the fact that the dimension of
the problem has been reduced from p+1to M + 1.
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Dimension Reduction Methods

All dimension reduction methods work in two steps.
@ First, the transformed predictors Z;, 25, ..., Zyy are obtained.
@ Second, the model is fit using these M predictors.

@ However, the construction of Zy, 25, ..., Zys can be achieved in different
ways.

@ We will consider the principal components method.
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Principal Components Regression

@ The idea is to apply principal components analysis (PCA) to the n x p
features matrix X. This has nothing to do with the outcome!

@ The first principal component is that (normalized) linear combination of
the variables with the largest variance.

@ The second principal component has largest variance, subject to being
uncorrelated with the first.

@ And so on. (We will discuss more details in Chapter 10).

@ Hence with many correlated original variables, we replace them with a small
set of principal components that capture their joint variation.
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Advertising Data

Consider two features: population size (pop) and ad spending for a particular
company (ad).
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The first principal component direction is shown in green. It is the dimension
along which the data vary the most. We get

zi1 = 0.839 x (pop; — pop) + 0.544 x (ad; — ad).

The principal components regression (PCR) just fits a simple linear model for y;
versus z;; using least squares.
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Principal Components Regression

@ The principal components regression (PCR) approach involves
constructing the first M principal components, 71, ..., Zy, and then using
these components as the predictors in a linear regression model that is fit
using least squares.

@ We hope that a small number of principal components suffice to explain
most of the variability in the data, as well as the relationship with the
response.

@ As we explained before, it is one of the dimension reduction method, which
reduces fitting a linear model with p + 1 predictors to M + 1 predictors.

@ This attains better bias-variance trade-off.
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Two Simulated Examples
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@ How to select the number of components M? Cross-validation!
@ PCR does not perform feature selection.

@ Similar to the ridge and lasso regression, we generally recommend
standardizing each predictor.
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High-Dimensional Data

o Definition: High-dimensional data occurs when the number of features p
exceeds the number of observations n.

o Challenges: Traditional models (e.g., linear regression) may overfit and
perform poorly due to increased variance.

o Examples: Genomics (e.g., SNP data) and marketing (e.g., search terms).
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Regularization Techniques Overview

@ Purpose: Regularization reduces model flexibility, managing overfitting.

@ Techniques:
o Ridge Regression: Adds a penalty for large coefficients.

o Lasso Regression: Encourages sparsity by setting some coefficients to zero.

o Principal Component Regression (PCR): Reduces dimensionality by using
principal components.
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Ridge Regression

Concept: Adds an L? penalty to the regression to shrink coefficients.
o Equation: RSS + \ )" 37
@ Pros: Useful when predictors are highly correlated.

o Limitations: Does not produce sparse models.
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Lasso Regression

o Concept: Adds an L! penalty, setting some coefficients to zero.
e Equation: RSS + A" |5

@ Pros: Produces sparse models, good for feature selection.
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Principal Component Regression (PCR)

@ Concept: Reduces predictors by using principal components.
o Advantages: Reduces dimensionality and mitigates multicollinearity.

o Trade-Off: Not all components correlate with the response.
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Model Evaluation in High Dimensions

o Traditional Metrics: R?, adjusted R?, and p-values are unreliable.
o Why ?: Measures of model fit on the training data

o Better Metrics: MSE or R? on an independent test set
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