
Lecture 16: Linear Model Selection and Regularization
(Textbook 6.3 and 6.4)
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Dimension Reduction Methods

The methods that we have discussed so far in this chapter have involved
fitting linear regression models, via least squares or a shrunken approach,
using the original predictors, X1,X2, ...,Xp.

We now explore a class of approaches that transform the predictors and
then fit a least squares model using the transformed variables. We will refer
to these techniques as dimension reduction methods.
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Dimension Reduction Methods

Let Z1,Z2, ...,ZM represent M < p linear combinations of our original p
predictors,

Zm =

p∑
j=1

ϕjmXj ,

for some constants ϕ1m, ..., ϕpm, and m = 1, ...,M.

We then fit the linear regression

Y = θ0 +
M∑

m=1

θmZm + ϵ

using the ordinary least squares.

In the previous model, the regression coefficients are given by θ0, ..., θM . If
the constants ϕ1m, ..., ϕpm are chosen wisely, then such dimension reduction
approaches can often outperform OLS regression.

The term dimension reduction comes from the fact that the dimension of
the problem has been reduced from p + 1 to M + 1.
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Dimension Reduction Methods

All dimension reduction methods work in two steps.

First, the transformed predictors Z1,Z2, ...,ZM are obtained.

Second, the model is fit using these M predictors.

However, the construction of Z1,Z2, ...,ZM can be achieved in different
ways.

We will consider the principal components method.
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Principal Components Regression

The idea is to apply principal components analysis (PCA) to the n × p
features matrix X. This has nothing to do with the outcome!

The first principal component is that (normalized) linear combination of
the variables with the largest variance.

The second principal component has largest variance, subject to being
uncorrelated with the first.

And so on. (We will discuss more details in Chapter 10).

Hence with many correlated original variables, we replace them with a small
set of principal components that capture their joint variation.
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Advertising Data

Consider two features: population size (pop) and ad spending for a particular
company (ad).

The first principal component direction is shown in green. It is the dimension
along which the data vary the most. We get

zi1 = 0.839× (popi − ¯pop) + 0.544× (adi − ād).

The principal components regression (PCR) just fits a simple linear model for yi
versus zi1 using least squares.
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Principal Components Regression

The principal components regression (PCR) approach involves
constructing the first M principal components, Z1, ...,ZM , and then using
these components as the predictors in a linear regression model that is fit
using least squares.

We hope that a small number of principal components suffice to explain
most of the variability in the data, as well as the relationship with the
response.

As we explained before, it is one of the dimension reduction method, which
reduces fitting a linear model with p + 1 predictors to M + 1 predictors.

This attains better bias-variance trade-off.
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Two Simulated Examples

How to select the number of components M? Cross-validation!

PCR does not perform feature selection.

Similar to the ridge and lasso regression, we generally recommend
standardizing each predictor.

8 / 14



High-Dimensional Data

Definition: High-dimensional data occurs when the number of features p
exceeds the number of observations n.

Challenges: Traditional models (e.g., linear regression) may overfit and
perform poorly due to increased variance.

Examples: Genomics (e.g., SNP data) and marketing (e.g., search terms).
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Regularization Techniques Overview

Purpose: Regularization reduces model flexibility, managing overfitting.

Techniques:

Ridge Regression: Adds a penalty for large coefficients.

Lasso Regression: Encourages sparsity by setting some coefficients to zero.

Principal Component Regression (PCR): Reduces dimensionality by using
principal components.
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Ridge Regression

Concept: Adds an L2 penalty to the regression to shrink coefficients.

Equation: RSS + λ
∑

β2
j

Pros: Useful when predictors are highly correlated.

Limitations: Does not produce sparse models.
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Lasso Regression

Concept: Adds an L1 penalty, setting some coefficients to zero.

Equation: RSS + λ
∑

|βj |

Pros: Produces sparse models, good for feature selection.
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Principal Component Regression (PCR)

Concept: Reduces predictors by using principal components.

Advantages: Reduces dimensionality and mitigates multicollinearity.

Trade-Off: Not all components correlate with the response.
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Model Evaluation in High Dimensions

Traditional Metrics: R2, adjusted R2, and p-values are unreliable.

Why ?: Measures of model fit on the training data

Better Metrics: MSE or R2 on an independent test set
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