
Deep Learning

Nayel Bettache

1 / 16



Motivation for Neural Networks

Why Neural Networks?

Solve complex problems with nonlinear relationships.
Handle large-scale data in fields like computer vision, NLP, and
bioinformatics.

Applications:

Image Recognition (e.g., autonomous vehicles, facial recognition).
Language Translation (e.g., Google Translate).
Predictive Analytics (e.g., stock market predictions, medical diagnostics).

Enablers of Deep Learning:

Large datasets available online.
Powerful GPUs and TPUs for training models.
Improved algorithms (e.g., backpropagation, SGD).

2 / 16



Intuition for Neural Networks

Biological Analogy:

Neurons process information and send signals to others.
Connections between neurons (synapses) determine how information is
passed.

Neural Network Analogy:

Artificial neurons (units) process inputs and produce activations.
Connections between units (weights) determine how data flows through the
network.

Key Insight:

Networks learn hierarchical patterns: low-level features (edges) to high-level
patterns (faces, objects).

3 / 16



Intuition for Neural Networks

Figure: Neural networks mimic information flow in the brain.

4 / 16



Single Layer Neural Network: Concepts

Setting: Predict a response variable Y using predictors X = (X1, . . . ,Xp).

Goal: Learn a nonlinear function f (X ) to predict Y .

Hidden Layer Activations:

Ak = hk(X ) = g(wk0 + wk1X1 + · · ·+ wkpXp), k = 1, . . . ,K ,

where g(x) is a nonlinear activation function.

Activation Functions:

Sigmoid: g(x) = ex

1+ex
.

ReLU: g(x) = max(0, x).

Neural Network Model:

f (X ) = β0 +
K∑

k=1

βkAk = β0 +
K∑

k=1

βkg(wk0 + wk1X1 + · · ·+ wkpXp).

5 / 16



Single Layer Neural Network

6 / 16



Multilayer Perceptron (MLP)

Goal: Learn complex, nonlinear relationships between inputs X = (X1, . . . ,Xp)
and target outputs Y .

Extend the single-layer model by introducing multiple hidden layers to capture
hierarchical features.

Architecture:

Input Layer: Accepts input features X .
Hidden Layers: Each layer transforms inputs through:

A
(l)
k = g

w
(l)
k0 +

n(l−1)∑
j=1

w
(l)
kj A

(l−1)
j

 , l = 1, . . . , L,

where g(x) is an activation function (e.g., ReLU, Sigmoid).
Output Layer: Produces final predictions, f (X ).

Universal Approximation Theorem: An MLP with sufficient hidden units
can approximate any continuous function on a compact domain.

Requires nonlinear activation functions (e.g., ReLU, Sigmoid) to model
complex patterns.

7 / 16



MLP

Strengths:

Capable of learning hierarchical representations of data.
Flexible for a wide range of applications: regression, classification, image
recognition, etc.

Challenges:

Requires significant computational power for deep architectures.
Sensitive to hyperparameters (e.g., learning rate, layer sizes, regularization).

Best Practices:

Use regularization (e.g., L2, dropout) to prevent overfitting.
Employ batch normalization and optimization techniques like Adam for
efficient training.
Tune hyperparameters systematically using grid search or Bayesian
optimization.

8 / 16



Multilayer Perceptron

9 / 16



MLP - Performance

10 / 16



Fitting a Neural Network

Objective: Given data (xi , yi ), i = 1, . . . , n, minimize the loss function:

min
w ,β

n∑
i=1

(yi − f (xi ))
2,

where:

f (X ) = β0 +
K∑

k=1

βkg(wk0 + wk1X1 + · · ·+ wkpXp).

11 / 16



Fitting a Neural Network

Optimization Methods:

Stochastic Gradient Descent (SGD).
Regularization: Minimize RSS + λ

∑
j θ

2
j , where θ = (w , β).

Advanced Techniques:

Dropout: Randomly drop units during training to prevent overfitting.

Tuning: Optimize parameters like:

Number of layers L.
Units per layer K .
Regularization parameter λ.
Learning rate in gradient descent.
Dropout probability.

12 / 16



Backpropagation: How Neural Networks Learn

Purpose:

Efficiently compute gradients of the loss function with respect to all weights
in the network.
Use these gradients to update weights via optimization (e.g., Gradient
Descent).

Key Insight:

Backpropagation uses the chain rule of calculus to efficiently compute
gradients across multiple layers.

Challenges:

Vanishing gradients: Gradients become very small in deep networks
(mitigated by ReLU activation).
Computational cost: High-dimensional networks require significant resources.

13 / 16



Backpropagation: How Neural Networks Learn

Process:
1 Forward Pass:

Compute activations layer by layer to produce output ŷ .
Calculate the loss L(y , ŷ) (e.g., MSE, cross-entropy).

2 Backward Pass:
Start at the output layer and compute the gradient of the loss w.r.t. outputs:

∂L
∂ŷ

Propagate gradients backward through each layer using the chain rule:

∂L
∂w

=
∂L
∂A
·
∂A

∂w

where A represents activations.
3 Weight Update:

Adjust weights using gradients:

w ← w − η ·
∂L
∂w

where η is the learning rate.

14 / 16



Key Hyperparameters in Neural Networks

Learning Rate:

Determines how fast weights are updated during training.

Batch Size:

Number of samples processed before updating weights.

Number of Layers and Units:

More layers/units increase model capacity but risk overfitting.

Regularization Parameter (λ):

Controls penalty for large weights to avoid overfitting.

Dropout Probability:

Fraction of neurons randomly dropped during training to improve
generalization.

15 / 16



Tools for Deep Learning

Popular Frameworks:

TensorFlow: High-performance library for scalable deep learning.
PyTorch: Flexible, dynamic computation graphs, widely used in research.
Keras: Simplified high-level API for neural networks.

Other Tools:

Scikit-learn (for preprocessing).
Jupyter Notebooks (for experimentation).

Best Practices:

Use GPU/TPU for faster training.
Leverage pre-trained models when appropriate.

16 / 16


