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Moving Beyond Linearity

The linearity assumption is almost always an approximation, and sometimes a
poor one.

We can improve upon least squares using regularization → reducing the
complexity of the linear model. But we are still using a linear model.

We consider the following extensions to relax the linearity assumption.

Polynomial regression

Step functions

Regression splines

Smoothing splines

Local regression

Generalized additive models

2 / 24



Polynomial Regression

The polynomial regression

yi = β0 + β1xi + β2x
2
i + ...+ βdx

d
i + ϵi ,

where ϵi is the error term.

The coeffcients can be estimated using least squares linear regression.

Not really interested in the coefficients; more interested in the fitted
function values at any value x0:

f̂ (x0) = β̂0 + β̂1x0 + β̂2x
2
0 + ...+ β̂dx

d
0 .

There is a simple formula to calculate the pointwise standard error of f̂ (x0).
The pointwise confidence interval is f̂ (x0)± 2 · se[f̂ (x0)].

We either fix the degree d at some reasonably low value (≤ 3 or 4), else
use cross-validation to choose d .
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Polynomial Regression

The polynomial regression can be used for logistic regression

logit P(yi = 1|xi ) = β0 + β1xi + β2x
2
i + ...+ βdx

d
i .

Can do separately on several variables (see GAMs later).

4 / 24



The Wage Data

Left: The solid blue curve is a degree-4 polynomial of wage as a function of age,
fit by least squares. The dotted curves indicate an estimated 95 % confidence
interval. Right: We model the binary event wage>250 using logistic regression,
with a degree-4 polynomial.
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Step Functions

The polynomial regression imposes a global structure on the non-linear
function of X .

The step function approach avoids such a global structure. Here we break
the range of X into bins, and fit a different constant in each bin. Define

C0(X ) = I (X < c1), C1(X ) = I (c1 ≤ X < c2), . . . ,CK (X ) = I (cK ≤ X ),

where c1, c2, ..., cK are K cutpoints in the range of X . Basically,
C0(X ), . . . ,CK (X ) are K + 1 dummy variables, and the summation is 1.

We then use least squares to fit a linear model using C1(X ),
C2(X ), . . . ,CK (X ) as predictors

yi = β0 + β1C1(xi ) + β2C2(xi ) + ...+ βKCK (xi ) + ϵi ,

where ϵi is the error term. (Why there is no C0(X ) in the model?)

βj represents the average increase in the response for X in cj ≤ X < cj+1

relative to X < c1.
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The Wage Data

Left: The solid blue curve is a step function of wage as a function of age, fit by
least squares. The dotted curves indicate an estimated 95 % confidence interval.
Right: We model the binary event wage>250 using logistic regression, with the
step function.
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Pros and Cons of Step Function

The step function approach is widely used in biostatistics and epidemiology
among other areas, because the model is easy to fit and the regression
coefficient has a natural interpretation.

However, unless there are natural breakpoints in the predictors,
piecewise-constant functions can miss the trend of the curve. The choice of
breakpoints can be problematic.

Polynomial and piecewise-constant regression models are in fact special
cases of a basis function approach,

yi = β0 + β1b1(xi ) + β2b2(xi ) + ...+ βKbK (xi ) + ϵi ,

where b1(X ), b2(X ), . . . , bK (X ) are known basis functions.

In the following, we investigate a very common choice for a basis function:
regression splines.
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Piecewise Polynomials

Instead of a single polynomial in X over its whole domain, we can rather
use different polynomials in regions defined by knots,

Using more knots leads to a more flexible piecewise polynomial. In general,
if we place K different knots throughout the range of X , then we will end
up fitting K + 1 different cubic polynomials.

Better to add constraints to the polynomials, e.g. continuity. This leads to
cubic splines.

The general definition of a degree-d spline is that it is a piecewise degree-d
polynomial, with continuity in derivatives up to degree d − 1 at each knot.
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The Wage Data
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The Spline Basis Representation

How can we construct the degree-d spline?

A linear spline with knots at ξk , k = 1, ...,K is a piecewise linear
polynomial continuous at each knot. It is

yi = β0 + β1b1(xi ) + β2b2(xi ) + ...+ βK+1bK+1(xi ) + ϵi ,

where bk are basis functions

b1(xi ) = xi , bk+1(xi ) = (xi − ξk)+, k = 1, ...,K ,

here (·)+ means positive part,

What is the interpretation of β1? (The averaged increase of Y if we
increase one unit of X when X < ξ1.)
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Linear Splines

12 / 24



Cubic Splines

A cubic spline with knots at ξk , k = 1, ...,K is a piecewise cubic
polynomial with continuous derivatives up to order 2 at each knot. It is

yi = β0 + β1b1(xi ) + β2b2(xi ) + ...+ βK+3bK+3(xi ) + ϵi ,

where bk are basis functions

b1(xi ) = xi , b2(xi ) = x2i , b3(xi ) = x3i ,

bk+3(xi ) = (xi − ξk)
3
+, k = 1, ...,K ,
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Cubic Splines
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Natural Cubic Splines

A natural spline is a regression spline with additional boundary constraints: the
function is required to be linear at the boundary.
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Choosing the Number and Locations of the Knots

Typically, we place K knots at the corresponding quantiles of the data or
place on the range of X with equal space. Usually, the placement of knots
is not very crucial.

We use cross-validation to choose K . Specifically, given a fixed K , we use
cross-validation to estimate the test RSS, and then we choose K with
smallest estimated test RSS.
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Smoothing Splines

The smoothing spline is the minimizer of the following objective function

n∑
i=1

(yi − g(xi ))
2 + λ

∫
g ′′(t)2dt,

where λ is a nonnegative tuning parameter.

The first term
∑n

i=1(yi − g(xi ))
2 is RSS which tries to make g(x) match

the data at each xi .

Broadly speaking, the second derivative of a function is a measure of its
roughness. So the second term

∫
g ′′(t)2dt is a roughness penalty on the

entire range of X .

The tuning parameter λ determines the importance between the model fit
and the smoothness of the estimated function (bias-variance trade-offi).

It can be shown that the minimizer is a shrunken version of the natural
cubic spline with knots at x1, ..., xn. The math is beyond this lecture, and
we will not pursue this approach.
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Local Regression

Local regression is a different approach for fitting flexible non-linear functions,
which involves computing the fit at a target point x0 using only the nearby
training observations.
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Simulated Example

The blue curve is true f (x), and the light orange curve is the local regression
f̂ (x). The orange colored points are local to the target point x0, represented by
the orange vertical line. The yellow bell-shape indicates weights assigned to
each point, decreasing to zero with distance from the target point. The fit f̂ (x0)
at x0 is obtained by fitting a weighted linear regression (orange line segment),
and using the fitted value at x0 (orange solid dot) as the estimate f̂ (x0).
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Local Regression

The size of the neighborhood (fraction s of training data) is a tuning
parameter, which can be chosen by cross-validation.

When we have two dimensional predictors X1 and X2, we can simply use
two-dimensional neighborhoods, and fit bivariate linear regression models
using the observations that are near each target point in two-dimensional
space.

However, local regression can perform poorly if p is much larger than about
3 or 4 (known as curse of dimensionality).

20 / 24



Generalized Additive Models

In the previous sections, we only have a single predictor X .

Generalized additive models (GAMs) provide a general framework for
extending a standard linear model by allowing non-linear functions of each
of the variables, while maintaining additivity,

yi = β0 + f1(xi1) + f2(xi2) + ...+ fp(xip) + ϵi .

We can fit GAMs using smoothing splines or other smoothing methods
(local regression, regression splines) for a single predictor, via an approach
known as backfitting.

Coefficients not that interesting; fitted functions are.

Can mix terms – some linear, some nonlinear.

Can be applied to classification problems

logit P(yi = 1|xi ) = β0 + f1(xi1) + f2(xi2) + ...+ fp(xip).
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Wage Data

Consider the wage data

wage = β0 + f1(year) + f2(age) + f3(education) + ϵ.

The first two functions are natural splines in year and age, with four and five
degrees of freedom, respectively. The third function is a step function, fit to the
qualitative variable education.
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Wage Data

Consider the wage data

logit P(wage > 250) = β0 + β1 × year + f2(age) + f3(education).

The first function is linear in year, the second function a smoothing spline with
five degrees of freedom in age, and the third a step function for education.
There are very wide standard errors for the first level <HS of education.
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Pros and Cons of GAMs

GAMs allow us to fit a non-linear fj to each Xj , so that we can
automatically model non-linear relationships that standard linear regression
will miss.

The non-linear fits can potentially make more accurate predictions for the
response Y .

Because the model is additive, we can still examine the effect of each Xj on
Y individually while holding all of the other variables fixed.

It solves the curse of dimensionality.

However, GAMs fail to incorporate the interaction of variables.
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