Probabilities and Statistics Refresher

Nayel Bettache

Department of Statistical Science, Cornell University

Sample space - The set of all possible outcomes of an experiment is known as the sample space of the experiment and is denoted by S.

Sample space - The set of all possible outcomes of an experiment is known as the sample space of the experiment and is denoted by S.

Event - Any subset E of the sample space is known as an event. That is, an event is a set consisting of possible outcomes of the experiment. If the outcome of the experiment is contained in E , then we say that E has occurred.

Sample space - The set of all possible outcomes of an experiment is known as the sample space of the experiment and is denoted by S.

Event - Any subset E of the sample space is known as an event. That is, an event is a set consisting of possible outcomes of the experiment. If the outcome of the experiment is contained in E , then we say that E has occurred.

Axioms of probability - For each event E, we denote $P(E)$ as the probability of event E occuring. By noting E_1, \ldots, E_n mutually exclusive events, we have the 3 following axioms:

 (1) $0 \leqslant P(E) \leqslant 1$

- (2) $P(S) = 1$
- (3) $P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} P(E_i)$

Permutation - A permutation is an arrangement of r objects from a pool of n objects, in a given order. The number of such arrangements is given by $P(n, r)$, defined as:

$$
P(n,r)=\frac{n!}{(n-r)!}.
$$

Permutation - A permutation is an arrangement of r objects from a pool of n objects, in a given order. The number of such arrangements is given by $P(n, r)$, defined as:

$$
P(n,r)=\frac{n!}{(n-r)!}.
$$

Combination - A combination is an arrangement of r objects from a pool of n objects, where the order does not matter. The number of such arrangements is given by $C(n, r)$, defined as

$$
C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}.
$$

Bayes' rule - For events A and B such that $P(B) > 0$, we have:

$$
P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}
$$

Bayes' rule - For events A and B such that $P(B) > 0$, we have:

$$
P(A | B) = \frac{P(B | A)P(A)}{P(B)}
$$

Partition - Let $\{A_i, i \in \{1, ..., n\}\}$ be such that for all $i, A_i \neq \emptyset$. We say that ${A_i}$ is a partition if we have:

$$
\forall i \neq j, \ A_i \cap A_j = \emptyset \quad \text{and} \quad \bigcup_{i=1}^n A_i = S
$$

Conditional Probability

Bayes' rule - For events A and B such that $P(B) > 0$, we have:

$$
P(A | B) = \frac{P(B | A)P(A)}{P(B)}
$$

Partition - Let $\{A_i, i \in \{1, ..., n\}\}$ be such that for all $i, A_i \neq \emptyset$. We say that ${A_i}$ is a partition if we have:

$$
\forall i \neq j, \ A_i \cap A_j = \emptyset \quad \text{and} \quad \bigcup_{i=1}^n A_i = S
$$

Independence -Two events \vec{A} and \vec{B} are independent if and only if we have:

 $P(A \cap B) = P(A)P(B)$

Random Variable - A random variable, often noted X , is a function that maps every element in a sample space to a real line.

Random Variable - A random variable, often noted X , is a function that maps every element in a sample space to a real line.

Cumulative distribution function (CDF) - The cumulative distribution function F which is monotonically non-decreasing and is such that $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to+\infty} F(x) = 1$, is defined as:

 $F(x) = P(X \leq x)$

Random Variable - A random variable, often noted X , is a function that maps every element in a sample space to a real line.

Cumulative distribution function (CDF) - The cumulative distribution function F which is monotonically non-decreasing and is such that $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to+\infty} F(x) = 1$, is defined as:

$$
F(x)=P(X\leqslant x)
$$

Probability density function (PDF) - The probability density function f is the probability that X takes on values between two adjacent realizations of the random variable.

CDF and PDF - Properties in the discrete (D) and the continuous (C) cases:

Variance - The variance of a random variable, often noted Var (X) or σ^2 , is a measure of the spread of its distribution function. It is determined as follows:

 $Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2.$

Variance - The variance of a random variable, often noted Var (X) or σ^2 , is a measure of the spread of its distribution function. It is determined as follows:

$$
Var(X) = E [(X – E[X])^{2}] = E [X^{2}] – E[X]^{2}.
$$

Standard deviation - The standard deviation of a random variable, often noted σ , is a measure of the spread of its distribution function which is compatible with the units of the actual random variable. It is determined as follows:

 $\sigma = \sqrt{\text{Var}(X)}$.

Random Variables

Variance - The variance of a random variable, often noted Var (X) or σ^2 , is a measure of the spread of its distribution function. It is determined as follows:

$$
Var(X) = E [(X - E[X])^{2}] = E [X^{2}] - E[X]^{2}.
$$

Standard deviation - The standard deviation of a random variable, often noted σ , is a measure of the spread of its distribution function which is compatible with the units of the actual random variable. It is determined as follows:

$$
\sigma=\sqrt{\text{Var}(X)}.
$$

Expectation and Moments of the Distribution - Here are the expressions of the expected value $E[X]$, generalized expected value $E[g(X)],$ k^{th} moment $E[X^k]$ and characteristic function $\psi(\omega)$ for the discrete and continuous cases:

Conditional density - The conditional density of X w.r.t. Y, noted $f_{X|Y}$, is:

$$
f_{X|Y}(x) = \frac{f_{XY}(x, y)}{f_Y(y)}.
$$

Conditional density - The conditional density of X w.r.t. Y, noted $f_{X|Y}$, is:

$$
f_{X|Y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)}.
$$

Independence - Two random variables X and Y are said to be independent if:

 $f_{XY}(x, y) = f_X(x) f_Y(y)$

Jointly Distributed Random Variables

Conditional density - The conditional density of X w.r.t. Y, noted $f_{X|Y}$, is:

$$
f_{X|Y}(x) = \frac{f_{XY}(x, y)}{f_Y(y)}.
$$

Independence - Two random variables X and Y are said to be independent if:

$$
f_{XY}(x,y)=f_X(x)f_Y(y)
$$

Covariance - We define the covariance of two random variables X and Y , that we note σ_{XY}^2 or more commonly $\mathsf{Cov}(X,Y)$, as follows:

$$
Cov(X, Y) \triangleq \sigma_{XY}^2 = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y
$$

Jointly Distributed Random Variables

Conditional density - The conditional density of X w.r.t. Y, noted $f_{X|Y}$, is:

$$
f_{X|Y}(x) = \frac{f_{XY}(x, y)}{f_Y(y)}.
$$

Independence - Two random variables X and Y are said to be independent if:

$$
f_{XY}(x,y)=f_X(x)f_Y(y)
$$

Covariance - We define the covariance of two random variables X and Y , that we note σ_{XY}^2 or more commonly Cov (X,Y) , as follows:

$$
Cov(X, Y) \triangleq \sigma_{XY}^2 = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y
$$

Correlation - By noting σ_X , σ_Y the standard deviations of X and Y, we define the correlation between the random variables X and Y, noted ρ_{XY} , as follows:

$$
\rho_{XY} = \frac{\sigma_{XY}^2}{\sigma_X \sigma_Y}
$$

Random sample - A random sample is a collection of n random variables X_1, \ldots, X_n that are independent and identically distributed with X.

Random sample - A random sample is a collection of *n* random variables X_1, \ldots, X_n that are independent and identically distributed with X.

Estimator - An estimator $\hat{\theta}$ is a function of the data that is used to infer the value of an unknown parameter θ^* in a statistical model.

Random sample - A random sample is a collection of *n* random variables X_1, \ldots, X_n that are independent and identically distributed with X.

Estimator - An estimator $\hat{\theta}$ is a function of the data that is used to infer the value of an unknown parameter θ^* in a statistical model.

Bias - The bias of an estimator $\hat{\theta}$ is defined as being the difference between the expected value of the distribution of $\hat{\theta}$ and the value of the true parameter, i.e.:

 $\text{Bias}(\hat{\theta}) = E[\hat{\theta}] - \theta^*.$

Parameter estimation

Random sample - A random sample is a collection of n random variables X_1, \ldots, X_n that are independent and identically distributed with X.

Estimator - An estimator $\hat{\theta}$ is a function of the data that is used to infer the value of an unknown parameter θ^* in a statistical model.

Bias - The bias of an estimator $\hat{\theta}$ is defined as being the difference between the expected value of the distribution of $\hat{\theta}$ and the value of the true parameter, i.e.:

$$
\text{Bias}(\hat{\theta}) = E[\hat{\theta}] - \theta^*.
$$

Sample mean and variance - The sample mean and the sample variance of a random sample are used to estimate the true mean μ and the true variance σ^2 of a distribution, are noted \bar{X} and s^2 respectively, and are such that:

$$
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i
$$
 and $s^2 = \hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$.