## Lecture 12: Resampling Methods (Textbook 5.2)

## Nayel Bettache

Department of Statistical Science, Cornell University

The bootstrap is mostly used to estimate the standard errors of some estimates. We consider the following simple example.

- Suppose that we wish to invest a fixed sum of money in two financial assets that yield returns of X and Y, respectively, where X and Y are random quantities.
- We will invest a fraction  $\alpha$  of our money in X, and will invest the remaining  $1 \alpha$  in Y.
- We wish to choose α to minimize the total risk, or variance, of our investment V(αX + (1 − α)Y).
- One can show that the value that minimizes the risk is given by

$$\alpha = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}},$$

where  $\sigma_Y^2 = Var(Y)$ ,  $\sigma_X^2 = Var(X)$  and  $\sigma_{XY} = Cov(X, Y)$ .

We estimate σ<sup>2</sup><sub>Y</sub>, σ<sup>2</sup><sub>X</sub> and σ<sub>XY</sub> by the sample variance σ<sup>2</sup><sub>Y</sub>, σ<sup>2</sup><sub>X</sub> and sample covariance σ̂<sub>XY</sub> based on 100 data points (x<sub>1</sub>, y<sub>1</sub>), ..., (x<sub>100</sub>, y<sub>100</sub>).

• Then, we estimate  $\alpha$  by

$$\hat{\alpha} = \frac{\hat{\sigma}_Y^2 - \hat{\sigma}_{XY}}{\hat{\sigma}_X^2 + \hat{\sigma}_Y^2 - 2\hat{\sigma}_{XY}},$$

• How to estimate the variance of the estimator  $\hat{\alpha}$ ?

- If we know the distribution of X and Y (usually not true in reality), we can estimate the variance of the estimator  $\hat{\alpha}$  by the following simulation based approach.
- We simulate 100 paired observations of X and Y and compute  $\hat{\alpha}$ . We repeat this procedure 1000 times, and get  $\hat{\alpha}_1, ..., \hat{\alpha}_{1000}$ .
- We estimate  $\mathbb{V}(\hat{lpha})$  by

$$\frac{1}{1000-1}\sum_{r=1}^{1000} (\hat{\alpha}_r - \bar{\alpha})^2, \text{ where } \bar{\alpha} = \frac{1}{1000}\sum_{r=1}^{1000} \hat{\alpha}_r.$$

- The procedure outlined above cannot be applied, because for real data we cannot generate new samples from the original population.
- However, the bootstrap approach allows us to use a computer to mimic the process of obtaining new data sets, so that we can estimate the variability of our estimate without generating additional samples.
- Rather than repeatedly obtaining independent data sets from the population, we instead obtain distinct data sets by repeatedly sampling observations from the original data set **with replacement**.
- Each of these 'bootstrap data sets' is created by sampling with replacement, and is the same size as our original dataset. As a result some observations may appear more than once in a given bootstrap data set and some not at all.

Bootstrap



How to use bootstrap to estimate  $\mathbb{V}(\hat{\alpha})$ ?

- We denote the first bootstrap data set by  $Z^{*1}$ , and use  $Z^{*1}$  to form an estimate of  $\alpha$ , denoted by  $\hat{\alpha}^{*1}$ .
- This procedure is repeated B times for some large value of B (say 1000), in order to produce B different bootstrap data sets, Z<sup>\*1</sup>,...,Z<sup>\*B</sup> and B corresponding α estimates â<sup>\*1</sup>,...,â<sup>\*B</sup>.
- We estimate  $\mathbb{V}(\hat{\alpha})$  by the sample variance of  $\hat{\alpha}^{*1},...,\hat{\alpha}^{*B}$ :

$$\frac{1}{B-1}\sum_{r=1}^{B}(\hat{\alpha}^{*r}-\bar{\alpha}^{*})^{2}, \text{ where } \bar{\alpha}^{*}=\frac{1}{B}\sum_{r=1}^{B}\hat{\alpha}^{*r}.$$

## Example



Left: A histogram of the estimates of  $\alpha$  obtained by generating 1,000 simulated data sets from the true population.

Center: A histogram of the estimates of  $\alpha$  obtained from 1,000 bootstrap samples from a single data set.

Right: The boxplots for estimates of  $\alpha$  displayed in the left and center panels.