Lecture 2: Statistical Learning (Textbook 2.1)

Nayel Bettache

Department of Statistical Science, Cornell University

• Advertising data set: sales of a product in 200 different markets, along with advertising budgets for the product in each of those markets for three different media: TV, radio, and newspaper.

- Advertising data set: sales of a product in 200 different markets, along with advertising budgets for the product in each of those markets for three different media: TV, radio, and newspaper.
- Suppose that we are statistical consultants hired to investigate the association between advertising and sales of this product.

 \bullet It is not possible for our client to directly increase sales of the product.

- It is not possible for our client to directly increase sales of the product.
- They can control the advertising expenditure in each of the three media.

- It is not possible for our client to directly increase sales of the product.
- They can control the advertising expenditure in each of the three media. \bullet
- If we determine that there is an association between advertising and sales, we can instruct our client to adjust advertising budgets, thereby indirectly increasing sales.

- It is not possible for our client to directly increase sales of the product.
- They can control the advertising expenditure in each of the three media.
- If we determine that there is an association between advertising and sales, we can instruct our client to adjust advertising budgets, thereby indirectly increasing sales.
- Goal: Develop a model that can be used to predict sales on the basis of the three media budgets: Sales $\approx f(TV, Radio, Newspaper)$.

 \bullet Sales is a target we want to predict. It will be denoted Y.

- \bullet Sales is a target we want to predict. It will be denoted Y.
- TV budget, Radio budget and Newspaper budget are predictors. They will be denoted X_1, X_2, X_3 respectively.
- Sales is a target we want to predict. It will be denoted Y.
- TV budget, Radio budget and Newspaper budget are predictors. They will be denoted X_1, X_2, X_3 respectively.
- The predictor vector is denoted $X =$ T \mathbf{I} X_1 X_2 X_3 ı .
- Sales is a target we want to predict. It will be denoted Y.
- TV budget, Radio budget and Newspaper budget are predictors. They will be denoted X_1, X_2, X_3 respectively.
- The predictor vector is denoted $X=\emptyset$ $\sqrt{ }$ $\overline{1}$ X_1 X_2 X_3 1 $\vert \cdot$
- We consider the regression model $Y = f(X) + \epsilon$, where ϵ is a random error term, independent of X with zero mean, capturing measurement errors.
- Sales is a target we want to predict. It will be denoted Y.
- TV budget, Radio budget and Newspaper budget are predictors. They will be denoted X_1, X_2, X_3 respectively.
- The predictor vector is denoted $X=\emptyset$ $\sqrt{ }$ $\overline{1}$ X_1 X_2 X_3 1 $\vert \cdot$
- We consider the regression model $Y = f(X) + \epsilon$, where ϵ is a random error term, independent of X with zero mean, capturing measurement errors.
- \bullet f is some fixed but unknown function. It represents the systematic information that X provides about Y .
- Sales is a target we want to predict. It will be denoted Y.
- TV budget, Radio budget and Newspaper budget are predictors. They will be denoted X_1, X_2, X_3 respectively.

CAN T

• The predictor vector is denoted
$$
X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}
$$
.

- We consider the regression model $Y = f(X) + \epsilon$, where ϵ is a random error term, independent of X with zero mean, capturing measurement errors.
- \bullet f is some fixed but unknown function. It represents the systematic information that X provides about Y .
- \bullet Objective: Estimate f based on the observed samples.

We denote \hat{f} the estimate of f based on the observed samples.

We denote \hat{f} the estimate of f based on the observed samples. In machine learning, \hat{f} is often a *black box*, in the sense that one is not typically concerned with the exact form of \hat{f} .

We denote \hat{f} the estimate of f based on the observed samples. In machine learning, \hat{f} is often a *black box*, in the sense that one is not typically concerned with the exact form of \hat{f} .

There are two main reasons that we may wish to estimate f :

We denote \hat{f} the estimate of f based on the observed samples. In machine learning, \hat{f} is often a *black box*, in the sense that one is not typically

concerned with the exact form of \hat{f} .

There are two main reasons that we may wish to estimate f :

• Prediction: With a good \hat{f} we can make predictions of Y at new unobserved points X. We then would have $\hat{Y} = \hat{f}(X)$.

We denote \hat{f} the estimate of f based on the observed samples.

In machine learning, \hat{f} is often a *black box*, in the sense that one is not typically concerned with the exact form of \hat{f} .

There are two main reasons that we may wish to estimate f :

- **Prediction**: With a good \hat{f} we can make predictions of Y at new unobserved points X. We then would have $\hat{Y} = \hat{f}(X)$.
- Inference: We can understand which components of $X = (X_1, X_2, \ldots, X_p)$ are important in explaining Y , and which are irrelevant.

Reducible error: \hat{f} will not be a perfect estimate for f , and this inaccuracy will introduce some error.

Reducible error: \hat{f} will not be a perfect estimate for f, and this inaccuracy will introduce some error.

This error is reducible because we can potentially improve the accuracy of \hat{f} by using a more efficient statistical learning technique to estimate f .

Reducible error: \hat{f} will not be a perfect estimate for f, and this inaccuracy will introduce some error.

This error is reducible because we can potentially improve the accuracy of \hat{f} by using a more efficient statistical learning technique to estimate f .

. Irreducible error: Even if we retrieve the exact f that generated the target, our prediction would still have some error in it!

Reducible error: \hat{f} will not be a perfect estimate for f , and this inaccuracy will introduce some error.

This error is reducible because we can potentially improve the accuracy of \hat{f} by using a more efficient statistical learning technique to estimate f .

Irreducible error: Even if we retrieve the exact f that generated the target, our prediction would still have some error in it! This is because Y is also a function of ϵ which, by definition, cannot be predicted using X.

• Reducible error: \hat{f} will not be a perfect estimate for f, and this inaccuracy will introduce some error.

This error is reducible because we can potentially improve the accuracy of \hat{f} by using a more efficient statistical learning technique to estimate f .

Irreducible error: Even if we retrieve the exact f that generated the target, our prediction would still have some error in it! This is because Y is also a function of ϵ which, by definition, cannot be predicted using X.

Consider a given estimate \hat{f} and a set of predictors X, which yields the prediction $\hat{Y} = \hat{f}(X)$.

• Reducible error: \hat{f} will not be a perfect estimate for f , and this inaccuracy will introduce some error.

This error is reducible because we can potentially improve the accuracy of \hat{f} by using a more efficient statistical learning technique to estimate f .

• Irreducible error: Even if we retrieve the exact f that generated the target, our prediction would still have some error in it! This is because Y is also a function of ϵ which, by definition, cannot be predicted using X.

Consider a given estimate \hat{f} and a set of predictors X, which yields the prediction $\hat{Y} = \hat{f}(X)$. Assume here that both \hat{f} and X are fixed, so that the only variability comes from ϵ . Then we have:

Prediction

The accuracy of \hat{Y} as a prediction for Y depends on two quantities:

Reducible error: \hat{f} will not be a perfect estimate for f , and this inaccuracy will introduce some error.

This error is reducible because we can potentially improve the accuracy of \hat{f} by using a more efficient statistical learning technique to estimate f .

Irreducible error: Even if we retrieve the exact f that generated the target, our prediction would still have some error in it! This is because Y is also a function of ϵ which, by definition, cannot be predicted using X.

Consider a given estimate \hat{f} and a set of predictors X , which yields the prediction $\hat{Y} = \hat{f}(X)$.

Assume here that both \hat{f} and X are fixed, so that the only variability comes from ϵ . Then we have:

$$
\mathbb{E}\left[\left(Y-\hat{Y}\right)^{2}\right]=\mathbb{E}\left[\left(f(X)+\epsilon-\hat{f}(X)\right)^{2}\right]
$$

$$
=\underbrace{\left(f(X)-\hat{f}(X)\right)^{2}}_{reducible}+\underbrace{\mathbb{V}(\epsilon)}_{irreducible}
$$

Given this dataset, the red curve seems to be a good estimate of f.

Given this dataset, the red curve seems to be a good estimate of f . This predictor \hat{f} is defined as follows:

Given this dataset, the red curve seems to be a good estimate of f. This predictor \hat{f} is defined as follows: For each value x taken by the predictor X, we consider $\hat{f}(x) = E(Y|X = x)$.

Given this dataset, the red curve seems to be a good estimate of f . This predictor \hat{f} is defined as follows:

For each value x taken by the predictor X, we consider $\hat{f}(x) = E(Y|X=x)$. $E(Y|X=x)$ is the expected value of Y given $X=x$. Basically \hat{f} returns the average of all the observed values of Y when predictors take the value x.

Given this dataset, the red curve seems to be a good estimate of f . This predictor \hat{f} is defined as follows:

For each value x taken by the predictor X, we consider $\hat{f}(x) = E(Y|X=x)$. $E(Y | X = x)$ is the expected value of Y given $X = x$. Basically \hat{f} returns the average of all the observed values of Y when predictors take the value x . $\hat{f}(x) = E(Y|X = x)$ is called the regression function.

• We can understand which components of $X = (X_1, X_2, ..., X_p)$ are important in explaining Y , and which are irrelevant.

- We can understand which components of $X = (X_1, X_2, ..., X_p)$ are important in explaining Y , and which are irrelevant.
- \bullet Depending on the complexity of f, we may be able to understand how each component X_i of X affects Y.

- We can understand which components of $X = (X_1, X_2, ..., X_n)$ are important in explaining Y , and which are irrelevant.
- \bullet Depending on the complexity of f, we may be able to understand how each component X_i of X affects Y.
- \bullet Now. \hat{f} cannot be treated as a black box, because we need to know its form to know the relationship between X and Y .

- We can understand which components of $X = (X_1, X_2, ..., X_n)$ are important in explaining Y , and which are irrelevant.
- \bullet Depending on the complexity of f, we may be able to understand how each component X_i of X affects Y.
- \bullet Now. \hat{f} cannot be treated as a black box, because we need to know its form to know the relationship between X and Y .
- Trade-off between prediction and inference: Linear models allow for simple and interpretable inference, but may not yield good predictions; non-linear models (introduced later) may have better prediction but is less interpretable and inference is challenging.
We would like to estimate f based on the training data.

- We can understand which components of $X = (X_1, X_2, ..., X_p)$ are important in explaining Y , and which are irrelevant.
- \bullet Depending on the complexity of f, we may be able to understand how each component X_i of X affects Y.
- \bullet Now, \hat{f} cannot be treated as a black box, because we need to know its form to know the relationship between X and Y .
- Trade-off between prediction and inference: Linear models allow for simple and interpretable inference, but may not yield good predictions; non-linear models (introduced later) may have better prediction but is less interpretable and inference is challenging.

Two different approaches to estimate f : Parametric methods and Non-parametric methods.

 \bullet Make an assumption about the functional form of f .

- \bullet Make an assumption about the functional form of f .
	- For example, one very simple assumption is that f is linear in X .

- \bullet Make an assumption about the functional form of f .
	- For example, one very simple assumption is that f is linear in X .
	- ٠

 $f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... \beta_n X_n$

- \bullet Make an assumption about the functional form of f .
	- For example, one very simple assumption is that f is linear in X .
	- ٠

$$
f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... \beta_p X_p.
$$

• Once we have assumed that f is linear, the problem of estimating f is greatly simplified.

- \bullet Make an assumption about the functional form of f.
	- For example, one very simple assumption is that f is linear in X .
	- ٠

$$
f(X)=\beta_0+\beta_1X_1+\beta_2X_2+...\beta_pX_p.
$$

- Once we have assumed that f is linear, the problem of estimating f is greatly simplified.
- \bullet Instead of having to estimate an entirely arbitrary p-dimensional function f , one only needs to estimate the $p + 1$ coefficients $\beta_0, ..., \beta_p$.

- \bullet Make an assumption about the functional form of f.
	- For example, one very simple assumption is that f is linear in X .
	- ٠

$$
f(X)=\beta_0+\beta_1X_1+\beta_2X_2+...\beta_pX_p.
$$

- Once we have assumed that f is linear, the problem of estimating f is greatly simplified.
- \bullet Instead of having to estimate an entirely arbitrary p-dimensional function f, one only needs to estimate the $p + 1$ coefficients $\beta_0, ..., \beta_p$.
- 2 After a model has been selected, we need a procedure that uses the training data to fit or train the model.

- \bullet Make an assumption about the functional form of f.
	- For example, one very simple assumption is that f is linear in X .
	- ٠

$$
f(X)=\beta_0+\beta_1X_1+\beta_2X_2+...\beta_pX_p.
$$

- Once we have assumed that f is linear, the problem of estimating f is greatly simplified.
- \bullet Instead of having to estimate an entirely arbitrary p-dimensional function f, one only needs to estimate the $p + 1$ coefficients $\beta_0, ..., \beta_p$.
- 2 After a model has been selected, we need a procedure that uses the training data to fit or train the model.
	- The most common approach to fitting the model is the ordinary least squares.

- \bullet Make an assumption about the functional form of f .
	- For example, one very simple assumption is that f is linear in X .
	-

$$
f(X)=\beta_0+\beta_1X_1+\beta_2X_2+...\beta_pX_p.
$$

- Once we have assumed that f is linear, the problem of estimating f is greatly simplified.
- Instead of having to estimate an entirely arbitrary p -dimensional function f , one only needs to estimate the $p + 1$ coefficients $\beta_0, ..., \beta_p$.
- **2** After a model has been selected, we need a procedure that uses the training data to fit or train the model.
	- The most common approach to fitting the model is the ordinary least squares.

The model-based approach just described is referred to as parametric; it reduces the problem of estimating f down to one of estimating a set of parameters.

 \bullet Pros: It simplifies the problem of estimating f because it is generally much easier to estimate a set of parameters than it is to fit an entirely arbitrary function f .

- **Pros:** It simplifies the problem of estimating f because it is generally much easier to estimate a set of parameters than it is to fit an entirely arbitrary function f
- **Cons:** The potential disadvantage of a parametric approach is that the model we choose will usually not match the true unknown form of f .

- **Pros:** It simplifies the problem of estimating f because it is generally much easier to estimate a set of parameters than it is to fit an entirely arbitrary function f
- **Cons:** The potential disadvantage of a parametric approach is that the model we choose will usually not match the true unknown form of f .
	- \bullet If the chosen model is too far from the true f, then our estimate will be poor.

- **Pros:** It simplifies the problem of estimating f because it is generally much easier to estimate a set of parameters than it is to fit an entirely arbitrary function f
- **Cons**: The potential disadvantage of a parametric approach is that the model we choose will usually not match the true unknown form of f .
	- If the chosen model is too far from the true f , then our estimate will be poor.
	- We can try to address this problem by choosing flexible models that can fit many different possible functional forms for f .

- **Pros:** It simplifies the problem of estimating f because it is generally much easier to estimate a set of parameters than it is to fit an entirely arbitrary function f
- **Cons:** The potential disadvantage of a parametric approach is that the model we choose will usually not match the true unknown form of f .
	- If the chosen model is too far from the true f , then our estimate will be poor.
	- We can try to address this problem by choosing flexible models that can fit many different possible functional forms for f .
	- In general, fitting a more flexible model requires estimating a greater number of parameters.

- **Pros:** It simplifies the problem of estimating f because it is generally much easier to estimate a set of parameters than it is to fit an entirely arbitrary function f
- **Cons:** The potential disadvantage of a parametric approach is that the model we choose will usually not match the true unknown form of f .
	- If the chosen model is too far from the true f , then our estimate will be poor.
	- We can try to address this problem by choosing flexible models that can fit many different possible functional forms for f .
	- In general, fitting a more flexible model requires estimating a greater number of parameters.
	- These more complex models can lead to a phenomenon known as overfitting the data, which essentially means they follow the errors, or noise, too closely.

A linear model $\hat{f}_L(X)=\hat{\beta}_0+\hat{\beta}_1X$ gives a reasonable fit here

Parametric methods

A linear model $\hat{f}_{\bm{L}}(X)=\hat{\beta}_0+\hat{\beta}_1X$ gives a reasonable fit here

A more flexible model $\hat{f}_{\mathsf{Q}}(X) = \hat{\beta}_0 + \hat{\beta}_1 X + \hat{\beta}_2 X^2$ gives a slightly better fit

They seek an estimate of f that gets as close to the data points as possible without being too rough or wiggly.

They seek an estimate of f that gets as close to the data points as possible without being too rough or wiggly.

 \bullet Pros: Potential to accurately fit a wider range of possible shapes for f .

They seek an estimate of f that gets as close to the data points as possible without being too rough or wiggly.

- \bullet Pros: Potential to accurately fit a wider range of possible shapes for f.
	- Any parametric approach brings with it the possibility that the functional form used to estimate f is very different from the true f , in which case the resulting model will not fit the data well.

They seek an estimate of f that gets as close to the data points as possible without being too rough or wiggly.

- \bullet Pros: Potential to accurately fit a wider range of possible shapes for f.
	- Any parametric approach brings with it the possibility that the functional form used to estimate f is very different from the true f , in which case the resulting model will not fit the data well.
- \bullet Cons: Since they do not reduce the problem of estimating f to a small number of parameters, a very large number of observations is required in order to obtain an accurate estimate for f.

Example: Simulated data points

Consider the following simulated example.

Example: Simulated data points

- Consider the following simulated example.
- Red points are simulated values for income from the model income = f (education, seniority) + ϵ where f is the blue surface and ϵ a random noise.

Example: Simulated data points

- **Consider the following simulated example.**
- Red points are simulated values for income from the model income = f (education, seniority) + ϵ where f is the blue surface and ϵ a random noise.
- If we are only given the red points, how can we estimate the blue surface?

Example 1: Linear regression

We estimate the blue surface with linear regression.

Example 1: Linear regression

- We estimate the blue surface with linear regression.
- $\hat{f}_{\text{L}}(\text{eduction},\text{sensitivity})=\hat{\beta}_0+\hat{\beta}_1\times\text{eduction}+\hat{\beta}_2\times\text{sensitivity}.$

Example2: Non-parametric method

We estimate the blue surface with a non parametric method.

Example2: Non-parametric method

- We estimate the blue surface with a non parametric method.
- Looks closer to the target blue surface !

Example3: Overfitting

We estimate the blue surface with a too flexible non parametric method.

Example3: Overfitting

- We estimate the blue surface with a too flexible non parametric method.
- This fit makes zero errors on the training data!

Prediction accuracy (flexibility) versus interpretability. Linear models are easy to interpret; thin-plate splines are not.

- Prediction accuracy (flexibility) versus interpretability. Linear models are easy to interpret; thin-plate splines are not.
- Good fit versus over-fit or under-fit. How do we know when the fit is just right?
- Prediction accuracy (flexibility) versus interpretability. Linear models are easy to interpret; thin-plate splines are not.
- Good fit versus over-fit or under-fit. How do we know when the fit is just right?
- Parsimony versus black-box.

We often prefer a simpler model involving fewer variables over a black-box predictor involving them all.
Flexibility versus interpretability

