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A Simple Example

Advertising data set: sales of a product in 200 different markets, along
with advertising budgets for the product in each of those markets for three
different media: TV, radio, and newspaper.

Suppose that we are statistical consultants hired to investigate the
association between advertising and sales of this product.
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A Simple Example

It is not possible for our client to directly increase sales of the product.

They can control the advertising expenditure in each of the three media.
If we determine that there is an association between advertising and sales,
we can instruct our client to adjust advertising budgets, thereby indirectly
increasing sales.
Goal: Develop a model that can be used to predict sales on the basis of the
three media budgets: Sales ≈ f (TV ,Radio,Newspaper).‘
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Notation

Sales is a target we want to predict. It will be denoted Y .

TV budget, Radio budget and Newspaper budget are predictors. They will
be denoted X1,X2,X3 respectively.

The predictor vector is denoted X =

X1

X2

X3

.
We consider the regression model Y = f (X ) + ϵ, where ϵ is a random error
term, independent of X with zero mean, capturing measurement errors.

f is some fixed but unknown function. It represents the systematic
information that X provides about Y .

Objective: Estimate f based on the observed samples.
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Why Estimate f ?

We denote f̂ the estimate of f based on the observed samples.

Prediction: With a good f̂ we can make predictions of Y at new
unobserved points X . We then would have Ŷ = f̂ (X ).

Inference: We can understand which components of X = (X1,X2, . . . ,Xp)
are important in explaining Y , and which are irrelevant.
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Prediction

The accuracy of Ŷ as a prediction for Y depends on two quantities:

Reducible error: f̂ will not be a perfect estimate for f , and this inaccuracy
will introduce some error.

Irreducible error: Even if we retrieve the exact f that generated the
target, our prediction would still have some error in it!
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E

[(
Y − Ŷ

)2
]
= E

[(
f (X ) + ϵ− f̂ (X )

)2
]

=
(
f (X )− f̂ (X )

)2

︸ ︷︷ ︸
reducible

+ V(ϵ)︸︷︷︸
irreducible
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Irreducible error

Given this dataset, the red curve seems to be a good estimate of f .
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For each value x taken by the predictor X , we consider f̂ (x) = E (Y |X = x).
E (Y |X = x) is the expected value of Y given X = x . Basically f̂ returns the
average of all the observed values of Y when predictors take the value x .
f̂ (x) = E (Y |X = x) is called the regression function.
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Inference

We would like to estimate f based on the training data.

We can understand which components of X = (X1,X2, ...,Xp) are
important in explaining Y , and which are irrelevant.

Depending on the complexity of f , we may be able to understand how each
component Xj of X affects Y .

Now, f̂ cannot be treated as a black box, because we need to know its
form to know the relationship between X and Y .

Trade-off between prediction and inference: Linear models allow for simple
and interpretable inference, but may not yield good predictions; non-linear
models (introduced later) may have better prediction but is less
interpretable and inference is challenging.
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We can understand which components of X = (X1,X2, ...,Xp) are
important in explaining Y , and which are irrelevant.

Depending on the complexity of f , we may be able to understand how each
component Xj of X affects Y .

Now, f̂ cannot be treated as a black box, because we need to know its
form to know the relationship between X and Y .

Trade-off between prediction and inference: Linear models allow for simple
and interpretable inference, but may not yield good predictions; non-linear
models (introduced later) may have better prediction but is less
interpretable and inference is challenging.

Two different approaches to estimate f : Parametric methods and
Non-parametric methods.
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Parametric methods: presentation

Parametric methods involve a two-step model-based approach.

1 Make an assumption about the functional form of f .

For example, one very simple assumption is that f is linear in X .

f (X ) = β0 + β1X1 + β2X2 + ...βpXp.

Once we have assumed that f is linear, the problem of estimating f is
greatly simplified.
Instead of having to estimate an entirely arbitrary p-dimensional function f ,
one only needs to estimate the p + 1 coefficients β0, ...., βp.

2 After a model has been selected, we need a procedure that uses the
training data to fit or train the model.

The most common approach to fitting the model is the ordinary least
squares.
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one only needs to estimate the p + 1 coefficients β0, ...., βp.

2 After a model has been selected, we need a procedure that uses the
training data to fit or train the model.

The most common approach to fitting the model is the ordinary least
squares.

The model-based approach just described is referred to as parametric; it reduces
the problem of estimating f down to one of estimating a set of parameters.
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Parametric methods: pros and cons

Assuming a parametric form for f has pros and cons.

Pros: It simplifies the problem of estimating f because it is generally much
easier to estimate a set of parameters than it is to fit an entirely arbitrary
function f .

Cons: The potential disadvantage of a parametric approach is that the
model we choose will usually not match the true unknown form of f .

If the chosen model is too far from the true f , then our estimate will be
poor.
We can try to address this problem by choosing flexible models that can fit
many different possible functional forms for f .
In general, fitting a more flexible model requires estimating a greater
number of parameters.
These more complex models can lead to a phenomenon known as overfitting
the data, which essentially means they follow the errors, or noise, too closely.
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Parametric methods

A linear model f̂L(X ) = β̂0 + β̂1X gives a reasonable fit here
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Parametric methods

A linear model f̂L(X ) = β̂0 + β̂1X gives a reasonable fit here

A more flexible model f̂Q(X ) = β̂0 + β̂1X + β̂2X
2 gives a slightly better fit
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Non-parametric methods

Non-parametric methods do not make explicit assumptions about the functional
form of f .

Pros: Potential to accurately fit a wider range of possible shapes for f .

Any parametric approach brings with it the possibility that the functional
form used to estimate f is very different from the true f , in which case the
resulting model will not fit the data well.

Cons: Since they do not reduce the problem of estimating f to a small
number of parameters, a very large number of observations is required in
order to obtain an accurate estimate for f .
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Example: Simulated data points

Consider the following simulated example.

Red points are simulated values for income from the model
income = f (education, seniority) + ϵ where f is the blue surface and ϵ a
random noise.

If we are only given the red points, how can we estimate the blue surface ?
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Example 1: Linear regression

We estimate the blue surface with linear regression.

f̂L(education, seniority) = β̂0 + β̂1 × education + β̂2 × seniority .
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Example2: Non-parametric method

We estimate the blue surface with a non parametric method.

Looks closer to the target blue surface !
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Example3: Overfitting

We estimate the blue surface with a too flexible non parametric method.

This fit makes zero errors on the training data!
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Some Trade-off

Prediction accuracy (flexibility) versus interpretability.
Linear models are easy to interpret; thin-plate splines are not.

Good fit versus over-fit or under-fit.
How do we know when the fit is just right?

Parsimony versus black-box.
We often prefer a simpler model involving fewer variables over a black-box
predictor involving them all.
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Flexibility versus interpretability
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