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Assess Model Accuracy

Objective: Introduce you to a wide range of statistical learning methods

Why don’t we just present the best performing method and study it
extensively ?

There is no free lunch in statistics
No one method dominates all others over all possible data sets.
On a particular data set, one specifc method may work best, but some other
method may work better on a similar but different data set.

It is an important task to decide for any given dataset which method
produces the best results.

Selecting the best approach can be one of the most challenging parts of
performing statistical learning in practice.
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Measuring the Quality of Fit

We fit a model f̂ with some training data {(x1, y1), . . . , (xn, yn)}.

Objective: Evaluate the performance of a statistical learning method on a
given data set.

Why do we need to measure the performance?

Quantify how well the predicted response matches the observed data.
In regression, the most commonly-used measure is the MSE.

Mean Squared Error (MSE): 1
n

∑n
i=1(yi − f̂ (xi ))

2.

MSE is calculated as the average of the squared differences between the
predicted and true response values on the TRAINING data
{(x1, y1), . . . , (xn, yn)}.
Smaller MSE =⇒ the predicted responses are closer to the true responses.

Training MSE vs Test MSE

Test data refers to the data which are not used to train the statistical model
(i.e., not used to calculate f̂ ).
Generally, we do not really care how well the method works on the training
data (overfitting is possible).
We prefer the accuracy of the predictions on unseen test data.
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Measuring the Quality of Fit: overview

We have at hand a dataset
{(x1, y1), . . . , (xn, yn), (xn+1, yn+1), . . . , (xn+T , yn+T )}.

We fit a model f̂ with the training data {(x1, y1), . . . , (xn, yn)}.
We compute the Training MSE.

MSETr =
1
n

∑n
i=1(yi − f̂ (xi ))

2.
This quantifies how well the model performs on data used for training.
Not a valid measure of the model fit because it can be an overfitting model.

We compute the Test MSE.

MSETe =
1
T

∑T
t=1(yn+t − f̂ (xn+t))

2.
We’d like to select the model for which the test MSE is as small as possible.
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Training MSE vs Test MSE

Left: Data simulated from f , shown in black. Three estimates of f are shown:
the linear regression line (orange curve), and two nonparametric fits (blue and
green curves). Right: Training MSE (grey curve), test MSE (red curve), and
minimum possible test MSE over all methods (dashed line). Squares represent
the training and test MSEs for the three fits shown in the left-hand panel.
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Training MSE vs Test MSE: explanations

Left Panel:

True function f is represented by the black curve.
Orange, blue, and green curves represent estimates of f using methods
with increasing flexibility.
The green curve, the most flexible, fits the observed data closely but poorly
estimates the true f because it is too wiggly.
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Training MSE vs Test MSE: explanations

Right Panel:

Training MSE decreases as flexibility increases.
Test MSE initially decreases, but eventually increases, showing a U-shape.
The blue curve minimizes the test MSE, which visually appears to estimate
f the best.
Horizontal dashed line represents the irreducible error, Var(ϵ), the lowest
achievable test MSE.
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Training MSE vs Test MSE: explanations

Key Insight:

As model flexibility increases, training MSE decreases, but test MSE may
increase, leading to overfitting.
Overfitting occurs when the method finds patterns in the training data that
are due to random chance, leading to a high test MSE.
Even without overfitting, training MSE is usually smaller than test MSE
because most methods aim to minimize the training MSE.
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Bias-Variance Trade-off

Suppose we have an estimator f̂ (x) from the training data.
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In order to minimize the expected test error, we need to select a statistical
learning method that simultaneously achieves low variance and low bias.
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There is bias-variance trade-off when choosing a method !
In a real-life situation in which f is unobserved, it is generally NOT possible to
explicitly compute the test MSE, bias, or variance for a statistical learning
method.
One should ALWAYS keep the bias-variance trade-off in mind.
We will explore very flexible methods that can eliminate bias. This does not
guarantee that they will outperform a much simpler method such as linear
regression.
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Common Approach: Quantify the accuracy of our estimate f̂ with the training
error rate:

TER =
1

n

n∑
i=1

1(yi ̸= ŷi ).

ŷi is the predicted class label for the i th observation using f̂ .
TER computes the fraction of incorrect classifications.
As in the regression setting, we are most interested in the error rates that result
from applying our classifier to test observations that were not used in training.
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Important: It is possible to show that the test error rate is minimized, on
average, by a very simple classifier that assigns each observation to the most
likely class, given its predictor values.
We should simply assign a test observation with predictor vector x0 to the class
j for which P[Y = j |X = x0] is the largest.
This very simple classifier is called the Bayes classifier.
Example: (yi ) are only distributed between two classes. I have a new
unobserved xn+1. What’s the best guess for yn+1 ?
In this case, the Bayes classifier corresponds to predicting class one if
P[Y = 1|X = xn+1] > 0.5.
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Bayes Classifier

Numerical Example: Simulated data set in a two-dimensional space consisting
of predictors X1 and X2.
Orange region = points for which P[Y = orange|X ] > 0.5. Blue region= points
for which P[Y = orange|X ] < 0.5.
The purple dashed line represents the points where the P is exactly 50%.
This is called the Bayes decision boundary.
A new observation that falls on the orange side of the boundary will be assigned
to the orange class, and similarly an observation on the blue side of the
boundary will be assigned to the blue class.
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What to do now ?: Given a real dataset, how can you estimate f ?
Idea: Estimate the conditional distribution of Y given X , and classify a given
observation to the class with highest estimated probability.
How ?: K -nearest neighbors is ONE method that do that.
KNN: Given a positive integer K and a test observation xn+1, the KNN
classifier first identifies the K points in the training data that are closest to
xn+1, represented by N0. It then estimates the conditional probability for class j
as the fraction of points in N0 whose response values equal j :
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How ?: K -nearest neighbors is ONE method that do that.
KNN: Given a positive integer K and a test observation xn+1, the KNN
classifier first identifies the K points in the training data that are closest to
xn+1, represented by N0. It then estimates the conditional probability for class j
as the fraction of points in N0 whose response values equal j :

P̂[Y = j |X = xn+1] =
1

K

∑
i∈N0

1(yi = j).

Finally, KNN classifies the test observation xn+1 to the class with the largest
probability.
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KNN

The KNN approach, using K = 3, is illustrated in a simple situation with six
blue observations and six orange observations.
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Left: A test observation at which a predicted class label is desired is shown as a
black cross. The three closest points to the test observation are identified, and
it is predicted that the test observation belongs to the most
commonly-occurring class, in this case blue.
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Left: A test observation at which a predicted class label is desired is shown as a
black cross. The three closest points to the test observation are identified, and
it is predicted that the test observation belongs to the most
commonly-occurring class, in this case blue.
Right: The KNN decision boundary for this example is shown in black. The
blue grid indicates the region in which a test observation will be assigned to the
blue class, and the orange grid indicates the region in which it will be assigned
to the orange class.
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KNN

How to choose K ?
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KNN

Bias-variance trade-off: As K diminishes, the method becomes more flexible !
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KNN

Bias-variance trade-off: As K diminishes, the method becomes more flexible !
When K = 1, the decision boundary is overly flexible and finds patterns in the
data that don’t correspond to the Bayes decision boundary. This corresponds to
a classifier that has low bias but very high variance.
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KNN

Bias-variance trade-off: As K diminishes, the method becomes more flexible !
When K = 100, the method becomes less flexible and produces a decision
boundary that is close to linear. This corresponds to a low-variance but
high-bias classifier.
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KNN

The KNN training error rate (blue, 200 observations) and test error rate
(orange, 5,000 observations) on the data set, as the level of flexibility (assessed
using 1/K on the log scale) increases.
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KNN

As 1/K increases, the method becomes more flexible. As in the regression
setting, the training error rate consistently declines as the flexibility increases.
However, the test error exhibits a characteristic U-shape, declining at first
(minimum at ≈ K = 10) before increasing again when the method becomes
excessively flexible and overfits.
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Curse of dimensionality

It looks like the more features you collect, the more accurate your learning
method will be.

As the number of features (dimensions) increases, the volume of the data
space grows exponentially. The volume Vp(r) of a p-dimensional ball of
radius r > 0 is equal to

Vp(r) = rp
πp/2

Γ(p/2 + 1)
∼p→∞

(
2eπr2

p

)p/2

(pπ)−1/2).

The volume Vp(r) of a ball of radius r goes to zero more than
exponentially fast with the dimension p !!

Many algorithms that work well in low-dimensional spaces become less
effective or even fail in high-dimensional spaces.
In low-dimensional spaces (e.g. 2D), KNN works well because the data is
densely packed and the concept of nearness is meaningful.
The algorithm can effectively find the k nearest neighbors and make
accurate predictions.
In high-dimensional spaces (e.g. 100D), KNN becomes less effective
because the data is sparse and the concept of nearness becomes less
meaningful.
The algorithm struggles to find the k nearest neighbors and makes less
accurate predictions.
As the number of dimensions increases, the distance between data points
increases exponentially.
This makes it harder for KNN to find the k nearest neighbors, leading to
decreased accuracy.
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Curse of dimensionality

Histograms of the pairwise-distances between n = 100 points sampled
uniformly in the hypercube [0, 1]p for p = 2,10,100, and 1000.

We observe that, when the dimension p increases, the minimal distance
between two points increases and all the points are at a similar distance
from the others, so the notion of “nearest points” vanishes.

Many algorithms that work well in low-dimensional spaces become less
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