
Lecture 19: Tree-Based Methods

Nayel Bettache

Department of Statistics and Data Science, Cornell University

1 / 22

Review: What does Decision Tree Look Like?

At a given internal node, the label (of the form Xj < tk) indicates the left-hand
branch emanating from that split, and the right-hand branch corresponds to
Xj ≥ tk . The number in each leaf (external node) is the mean of the response
for the observations that fall there.

2 / 22

Review: The three-region partition for the Hitters data set

Overall, the tree stratifies or segments the players into three regions of predictor
space: R1 = {X |Years < 4.5},R2 = {X |Years >= 4.5,Hits < 117.5}, and
R3 = {X |Years >= 4.5,Hits >= 117.5}.

3 / 22

Review: How to Build a Regression Tree?

Step 1: We divide the predictor space–that is, the set of possible values for
X1,X2, ...,Xp–into J distinct and non-overlapping boxes, R1,R2, ...,RJ . We
use recursive binary splitting.

Step 2: For every observation that falls into the region Rj , we make the
same prediction, which is simply the mean of the response values for the
training observations in Rj .

The recursive binary splitting usually leads to a deep tree, which overfit the
data. We use tree pruning idea to find the best subtree.

4 / 22

Trees versus Linear Models

The linear model says

f (X) = β0 +

p∑
j=1

Xjβj ,

whereas the regression tree says

f (X) =
M∑

m=1

cm · I (X ∈ Rm).

If the relationship between the features and the response is well
approximated by a linear model, then an approach such as linear regression
will likely work well. If instead there is a highly non-linear and complex
relationship between the features and the response, then decision trees
perform better.

The relative performances of tree-based and classical approaches can be
assessed by estimating the test error, using either cross-validation or the
validation set approach.

5 / 22

Advantages and Disadvantages of Trees

Trees are very easy to explain to people. In fact, they are even easier to
explain than linear regression!

Trees can be displayed graphically, and are easily interpreted even by a
non-expert (especially if they are small).

Trees can easily handle qualitative predictors without the need to create
dummy variables.

Unfortunately, trees generally do not have the same level of predictive
accuracy as some of the other regression and classification approaches.

Additionally, trees can be very non-robust. In other words, a small change
in the data can cause a large change in the prediction.

However, by aggregating many trees (using bagging, random forests, and
boosting), the predictive performance of trees can be substantially improved.

6 / 22

Bagging

Bootstrap aggregation, or bagging, is a general-purpose procedure for
reducing the variance of a statistical learning method; we introduce it here
because it is particularly useful and frequently used in the context of
decision trees.

Recall that given a set of n independent random variables X1, . . . ,Xn, each
with variance σ2, the variance of the average of X1, . . . ,Xn is given by
σ2/n.

In other words, averaging a set of random variables reduces variance.

7 / 22

Bagging

Instead, we can bootstrap, by taking repeated samples from the (single)
training data set.

In this approach we generate B different bootstrapped training data sets.
We then train our method on the bth bootstrapped training set in order to
get f̂ ∗b(x), the prediction at a point x . We then average all the predictions
to obtain

f̂bag (x) =
1

B

B∑
b=1

f̂ ∗b(x).

This is called bagging.

8 / 22

Bagging Trees

To apply bagging to regression trees, we simply construct B regression
trees using B bootstrapped training sets, and average the resulting
predictions. These trees are grown deep, and are not pruned. Hence each
individual tree has high variance, but low bias. Averaging these B trees
reduces the variance.

Bagging can be also applied to classification trees. For a given test
observation, we can record the class predicted by each of the B trees, and
take a majority vote. The overall prediction is the most commonly
occurring majority class among the B predictions.

9 / 22

Out-of-Bag Error Estimation

There is a simple way to estimate the test error of a bagged model, without
the need to perform cross-validation or the validation set approach.

Recall that the key to bagging is that trees are repeatedly fit to
bootstrapped subsets of the observations. (One can show that on average,
each bagged tree makes use of around two-thirds of the observations).

The remaining one-third of the observations not used to fit a given bagged
tree are referred to as the out-of-bag (OOB) observations.

We can predict the response for the ith observation using each of the trees
in which that observation was OOB.

This leads to a single OOB prediction for the ith observation.

We compute the averaged squared difference between the OOB prediction
and the training data. This is the OOB MSE (for a regression problem).

10 / 22

Variable Importance Measures

Bagging typically reduces variance (i.e. improve accuracy) over prediction
using a single tree.

However, it can be difficult to interpret the resulting model.

One can obtain an overall summary of the importance of each predictor
using the RSS (for bagging regression trees) or the Gini index (for bagging
classification trees).

In the case of bagging regression trees, we can record the total amount that
the RSS is decreased due to splits over a given predictor, averaged over all
B trees. In bagging classification trees, we replace RSS by the Gini index.

A large value of decreased RSS (or Gini index) indicates an important
predictor.

A graphical representation of variable importance is easy to draw.

11 / 22

Heart Data

Variable importance is computed using the mean decrease in Gini index, and
expressed relative to the maximum.

12 / 22

Random Forests

Random forests provide an improvement over bagged trees by way of a
small tweak that decorrelates the trees. This reduces the variance when we
average the trees.

As in bagging, we build a number of decision trees on bootstrapped
training samples.

But when building these decision trees, each time a split in a tree is
considered, a random selection of m predictors is chosen as split candidates
from the full set of p predictors. The split is allowed to use only one of
those m predictors.

A fresh selection of m predictors is taken at each split, and typically we
choose m ≈ √

p – that is, the number of predictors considered at each split
is approximately equal to the square root of the total number of predictors
(4 out of the 13 for the Heart data).

13 / 22

Why does Random Forest Work?

In other words, in building a random forest, at each split in the tree, the
algorithm is not even allowed to consider a majority of the available
predictors.

Suppose that there is one very strong predictor in the data set, along with
a number of other moderately strong predictors.

Then in the collection of bagged trees, most or all of the trees will use this
strong predictor in the top split. All of the bagged trees will look quite
similar and the resulting prediction will be highly correlated. Unfortunately,
averaging many highly correlated quantities does not reduce variance.

Random forests overcome this problem by forcing each split to consider
only a subset of the predictors. Therefore, on average many splits will not
even consider the strong predictor, and so other predictors will have more
of a chance.

We can think of this process as decorrelating the trees, thereby making the
average of the resulting trees less variable and hence more reliable.

14 / 22

Heart Data

Random forest with m = p is just bagging!

The test error (black and orange) is shown as a function of B, the number of
bootstrapped training sets. Random forests were applied with m =

√
p. The

dashed line indicates the test error resulting from a single classification tree.
The green and blue traces show the OOB error, which is considerably lower.

15 / 22

Boosting

Like bagging, boosting is a general approach that can be applied to many
statistical learning methods for regression or classification. Here we restrict
our discussion of boosting to the context of decision trees.

Recall that bagging involves creating multiple copies of the original training
data set using the bootstrap, fitting a separate decision tree to each copy,
and then combining all of the trees in order to create a single predictive
model.

Boosting works in a similar way, except that the trees are grown
sequentially: each tree is grown using information from previously grown
trees.

Boosting does not involve bootstrap sampling; instead each tree is fit on a
modified version of the original data set.

16 / 22

Boosting

17 / 22

Boosting

Unlike fitting a single large decision tree to the data, which amounts to
fitting the data hard and potentially overfitting, the boosting approach
instead learns slowly.

Given the current model, we fit a decision tree to the residuals from the
model. We then add this new decision tree into the fitted function in order
to update the residuals.

Each of these trees can be rather small, with just a few terminal nodes,
determined by the parameter d in the algorithm.

By fitting small trees to the residuals, we slowly improve f̂ in areas where it
does not perform well. The shrinkage parameter λ slows the process down
even further, allowing more and different shaped trees to attack the
residuals.

18 / 22

Tuning parameters for Boosting

The number of trees B. Unlike bagging and random forests, boosting can
overfit if B is too large, although this overfitting tends to occur slowly if at
all. We use cross-validation to select B.

The shrinkage parameter λ, a small positive number. This controls the rate
at which boosting learns. Typical values are 0.01 or 0.001.

The number of splits d in each tree, which controls the complexity of the
boosted ensemble. Often d = 1 works well, in which case each tree is a
stump, consisting of a single split and resulting in an additive model. More
generally d is the interaction depth, and controls the interaction order of
the boosted model, since d splits can involve at most d variables.

19 / 22

Gene Expression Data

Results from performing boosting and random forests on the 15-class gene
expression data set in order to predict cancer versus normal. The test error is
displayed as a function of the number of trees. For the two boosted models,
λ = 0.01. Depth-1 trees slightly outperform depth-2 trees, and both out-
perform the random forest, although the standard errors are around 0.02,
making none of these differences significant.

20 / 22

Summary

Decision trees are simple and interpretable models for regression and
classification

However they are often not competitive with other methods in terms of
prediction accuracy

Bagging, random forests and boosting are good methods for improving the
prediction accuracy of trees. They work by growing many trees on the
training data and then combining the predictions of the resulting trees.

The latter two methods – random forests and boosting – are among the
state-of-the-art methods for supervised learning. However their results can
be difficult to interpret.

21 / 22

Some Final Conclusion Remarks

Some recommended (more advanced) textbooks or reading materials

The Elements of Statistical Learning
(http://statweb.stanford.edu/~tibs/ElemStatLearn/)

Statistical Learning from a Regression Perspective
(http://www.springer.com/la/book/9780387775005)

Statistical Learning with Sparsity: The Lasso and Generalizations
(http://web.stanford.edu/~hastie/StatLearnSparsity/)

For unsupervised learning, you may want to take CS 4786/5786.

22 / 22

http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://www.springer.com/la/book/9780387775005
http://web.stanford.edu/~hastie/StatLearnSparsity/

