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Unsupervised Learning

In the supervised learning setting, we typically have access to a set of p
features X1,X2,...,Xp, measured on n observations, and a response Y also
measured on those same n observations. The goal is then to predict Y
using X1,X2,...,Xp.

In unsupervised learning, we have only a set of features X1,X2,...,Xp

measured on n observations. We are not interested in prediction, because
we do not have an associated response variable Y .

The goal is to discover interesting patterns about the measurements. (e.g.,
visualization, find subgroup of data, find subgroup of features, find
independence among features)
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Two important unsupervised learning problems

Principal components analysis, a tool used for data visualization or data
pre-processing before supervised techniques are applied.

Clustering, a broad class of methods for discovering unknown subgroups in
data.
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Principal Components Analysis

PCA allows us to summarize this set with a smaller number of
representative variables that collectively explain most of the variability in
the original set.

PCA produces a low-dimensional representation of a dataset. It finds a
sequence of linear combinations of the variables that have maximal
variance, and are mutually uncorrelated.

Apart from producing derived variables for use in supervised learning
problems, PCA also serves as a tool for data visualization.

4 / 20



Principal Components Analysis

How should we visualize n observations with p features X1,X2,...,Xp?

The first principal component of a set of features X1,X2,...,Xp is the
normalized linear combination of the features

Z1 = ϕ11X1 + ϕ21X2 + ...+ ϕp1Xp

that has the largest variance. By normalized, we mean that
∑p

j=1 ϕ
2
j1 = 1.

We refer to the elements ϕ11, ..., ϕp1 as the loadings of the first principal
component; together, the loadings make up the principal component
loading vector, ϕ1 = (ϕ11, ϕ21, ..., ϕp1)

T .

We constrain the loadings so that their sum of squares is equal to one,
since otherwise setting these elements to be arbitrarily large in absolute
value could result in an arbitrarily large variance.
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Advertising Data

Consider two features: population size (pop) and ad spending for a particular
company (ad).

The first principal component direction is shown in green. It is the dimension
along which the data vary the most. We get

Z1 = 0.839× (pop − ¯pop) + 0.544× (ad − ād).
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Computation of Principal Components

Suppose we have a n × p data set X. Since we are only interested in
variance, we assume that each of the variables in X has been centered to
have mean zero (that is, the column means of X are zero).

We then look for the linear combination of the sample feature values of the
form

zi1 = ϕ11xi1 + ϕ21xi2 + ...+ ϕp1xip,

for i = 1, ..., n that has the largest variance, subject to
∑p

j=1 ϕ
2
j1 = 1.

Since each of the xij has mean zero, then so does zi1 (for any values of
ϕj1). Hence the sample variance of the zi1 can be written as n−1

∑n
i=1 z

2
i1.
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Computation of Principal Components

The first principal component loading vector solves the optimization
problem

max
ϕ1

{1

n

n∑
i=1

(

p∑
j=1

ϕj1xij)
2
}
, st

p∑
j=1

ϕ2
j1 = 1.

We refer to z11, ..., zn1 as the scores of the first principal component.

The problem can be solved via an eigen decomposition, a standard
technique in linear algebra.
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Geometry of PCA

The loading vector ϕ1 with elements ϕ11, ϕ21, ..., ϕp1 defines a direction in
feature space along which the data vary the most.

If we project the n data points x1, ..., xn onto this direction, the projected
values are the principal component scores z11, ..., zn1 themselves.

zi1 = 0.839× (popi − ¯pop) + 0.544× (adi − ād).
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Second principal component

The second principal component is the linear combination of X1, ...,Xp that
has maximal variance among all linear combinations that are uncorrelated
with Z1.

The second principal component scores z12, z22, ..., zn2 take the form

zi2 = ϕ12xi1 + ϕ22xi2 + ...+ ϕp2xip,

where ϕ2 is the second principal component loading vector, with elements
ϕ12, ..., ϕp2.

It turns out that constraining Z2 to be uncorrelated with Z1 is equivalent to
constraining the direction ϕ2 to be orthogonal (perpendicular) to the
direction ϕ1.
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Visualization

90 observations simulated in three dimensions.
Left: the first two principal component directions span the plane that best
fts the data. The plane is positioned to minimize the sum of squared
distances to each point.
Right: the first two principal component score vectors give the coordinates
of the projection of the 90 observations onto the plane. 11 / 20



Advertising Data

Consider two features: population size (pop) and ad spending for a particular
company (ad).

The green solid line indicates the first principal component direction, and the
blue dashed line indicates the second principal component direction.
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Example

USAarrests data: For each of the fifty states in the United States, the data
set contains the number of arrests per 100, 000 residents for each of three
crimes: Assault, Murder, and Rape. We also record UrbanPop (the
percent of the population in each state living in urban areas).

The principal component score vectors have length n = 50, and the
principal component loading vectors have length p = 4.

PCA was performed after standardizing each variable to have mean zero
and standard deviation one.
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USAarrests data
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USAarrests data

The first two principal components for the USArrests data.

The blue state names represent the scores for the first two principal
components.

The orange arrows indicate the first two principal component loading
vectors (with axes on the top and right). For example, the loading for Rape
on the first component is 0.54, and its loading on the second principal
component 0.17 [the word Rape is centered at the point (0.54, 0.17)].

This figure is known as a biplot, because it displays both the principal
component scores and the principal component loadings.
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USAarrests data

The principal component loading vectors, ϕ1 and ϕ2, for the USArrests data.
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Some practical considerations

In general, scaling the variables to have standard deviation one is
recommended.

Each principal component loading vector is unique, up to a sign flip.

To understand the strength of each component, we are interested in
knowing the proportion of variance explained (PVE) by each one.
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Proportion Variance Explained

The total variance present in a data set (assuming that the variables have
been centered to have mean zero) is defined as

p∑
j=1

var(Xj) ≈
p∑

j=1

1

n

n∑
i=1

x2ij .

the variance explained by the mth principal component is

var(Zm) ≈
1

n

n∑
i=1

z2im.

The PVE of the mth principal component is given by the positive quantity
between 0 and 1 ∑n

i=1 z
2
im∑p

j=1

∑n
i=1 x

2
ij

.

The PVEs sum to one. We sometimes display the cumulative PVEs.
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USAarrests data
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Deciding How Many Principal Components to Use

In general, a n × p data matrix X has min(n − 1, p) distinct principal
components.

We would like to use the smallest number of principal components required
to get a good understanding of the data. How many principal components
are needed?

No simple answer to this question, as cross-validation is not available for
this purpose. (It is possible in PCR!)

An adhoc approach is to look at the PVE plot.
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