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Confidence Intervals: A Recap

Definition
Confidence Interval: A statistical procedure that produces an interval which, for
a fixed proportion of the time (e.g., 95%), will contain the true parameter when
applied to new data.

• Represents a plausible range of values for the true parameter

• Common Misconception: ”There’s a 95% chance that the interval (1.5,
2.6) contains the true parameter”

• Correct Interpretation: Once computed, an interval either does or does not
contain the true parameter

• Probability refers to the method’s performance over hypothetical future
samples
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Confidence Interval Formula

For a new dataset, the (1− α) confidence interval for b1 is:(
b̂1 − tα/2,n−p−1

√
v̂ar(b̂1), b̂1 + tα/2,n−p−1

√
v̂ar(b̂1)

)
.

Simplified Notation

We can write:

b̂1 ± t1−α/2,n−p−1

√
v̂ar(b̂1)
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A Weather Forecasting Analogy

Scenario
Imagine you’re a meteorologist predicting the average temperature for a city next
summer. You estimate it to be 25°C (77°F) with a 95% confidence interval of
23°C to 27°C (73.4°F to 80.6°F).

Conclusion
This analogy highlights that confidence intervals are about the reliability of the
estimation method over many repetitions, not the specific estimate itself.
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summer. You estimate it to be 25°C (77°F) with a 95% confidence interval of
23°C to 27°C (73.4°F to 80.6°F).

Correct Interpretation

- Repeatability: If you repeated this estimation many times, about 95% of the
intervals would contain the true average temperature.
- Fixed Outcome: Once summer happens, the true average temperature is fixed;
it either falls within your interval or it doesn’t.

Conclusion
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Scenario
Imagine you’re a meteorologist predicting the average temperature for a city next
summer. You estimate it to be 25°C (77°F) with a 95% confidence interval of
23°C to 27°C (73.4°F to 80.6°F).

Common Misinterpretations
• Incorrect: ”There’s a 95% chance the true average temperature is between

23°C and 27°C.”
• Correct: The true average is fixed; it’s either in the interval or not.

• Incorrect: ”95% of daily temperatures will fall within this range.”

• Correct: The interval is about the average temperature, not individual daily
temperatures.

• Incorrect: ”If we measure again next summer, there’s a 95% chance it will
fall in this range.”

• Correct: This interval is about this specific estimation process, not future
measurements.

Conclusion
This analogy highlights that confidence intervals are about the reliability of the
estimation method over many repetitions, not the specific estimate itself.
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Questions

• All things equal, what will typically be wider? A 95% confidence interval or a
90% confidence interval?

• All things equal, what will typically be wider? A 95% confidence interval
when n = 100 or when n = 500 where n is the number of observations?

• All things equal, what will typically be wider? A 95% confidence interval
when p = 5 or when p = 10 where p is the number of predictors in the
model?
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Crash Course on Statistical Inference
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Hypothesis Testing: A Basketball Analogy

The Claim
”I’m a really good basketball player and on average I score 20 points a game.”

”In God we trust. All others must bring data.”

W. Edwards Deming

The Challenge

How can we verify this claim using data?
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Evaluating the Claim: Scenarios

Claim: I score 20 points a game on average

• Scenario 1: You observe 2 games, average score = 18 points

• Scenario 2: You observe 2 games, average score = 10 points

• Scenario 3: You observe 25 games, average score = 10 points

Key Questions
• How do you decide whether to reject the claim?

• How much evidence is enough?

• What constitutes a ”significant” difference from the claim?
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The Logic of Hypothesis Testing

Claim: I score 20 points a game on average

Considerations:

• Initial trust in the claim

• ”Normal range” of outcomes for a
20-point average player

• Observed data vs. expected
outcomes

Decision Process:

• If observed outcome is plausible:
Cannot rule out the claim

• If observed outcome is very
unlikely: May reject the claim

Key Concept

Hypothesis testing involves comparing observed data against expected outcomes
to make informed decisions about claims.
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Hypothesis Testing Framework

1 Define Hypotheses
• Null hypothesis (H0): ”status

quo”
• Alternative hypothesis (H1):

typically what the researcher aims
to prove

2 Select Test Statistic
• Distribution known under H0

• Distribution under H1 not
necessary

3 Collect Data & Calculate
Statistic

4 Calculate p-value
• Compare observed statistic to H0

distribution
• P-value: probability of observing a

statistic as or more extreme than
observed, assuming H0 is true

5 Draw Conclusions
• Reject H0 if p-value < α
• Fail to reject H0 if p-value ≥ α

Key Concept

Hypothesis testing is a systematic approach to making statistical decisions based
on sample data and probability theory.
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Hypothesis Testing Errors

Decision Outcomes
• We either reject or fail to reject the null hypothesis

• We don’t confirm or accept the null hypothesis

Null is rejected Null is not rejected
Null is true Type I error ✓
Null is false ✓ Type II error

Key Points
• Type I errors are typically considered more ”costly” than Type II errors

• We limit the probability of Type I error to a certain significance level (α)

• Conventionally, α = 0.05, but this choice is somewhat arbitrary

Remember

The significance level (α) is the probability of rejecting the null hypothesis when it
is actually true.
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Type I and Type II Errors: Examples

Example: Rock Climbing Equipment
• Type I Error (False Positive):

• Frank thinks his equipment is
unsafe when it’s actually safe

• Type II Error (False Negative):
• Frank thinks his equipment is safe

when it’s actually unsafe

Example: Roulette Wheel
• Type I Error:

• Concluding the wheel is biased
when it’s actually fair

• Type II Error:
• Failing to detect that the wheel is

biased when it actually is

Question for Reflection
In a medical diagnosis scenario:

• What would be a Type I error?

• What would be a Type II error?
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Hypothesis Testing in Linear Models

Common Tests in Linear Regression

We often test hypotheses about:

1 Individual Coefficients
• H0: βi = 0 (no effect)
• H1: βi ̸= 0 (significant effect)

2 Categorical Variables
• H0: All category coefficients = 0
• H1: At least one category coefficient ̸= 0

3 Model Comparison
• H0: Additional variables don’t improve the model
• H1: Additional variables significantly improve the model

Key Concept

These tests help us determine which variables are statistically significant predictors
in our model.
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Testing a Single Coefficient in Linear Regression

Model Assumption

Assume the following linear model:

Yi = b0 + b1X1 + b2X2 . . . bpXp + εi

where εi ∼ N(0, σ2
ε)

Research Question
Does X1 have a significant association with Y when controlling for X2,X3, . . . ,Xp?

Hypotheses:

H0 : b1 = 0

H1 : b1 ̸= 0

Decision Rule:

• Reject H0 if |b̂1| is ”large enough”

• But how large is ”large enough”?

Key Consideration

We need to determine a threshold for |b̂1| that balances Type I and Type II errors.
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Testing a Single Coefficient: The t-Statistic

Challenge

We can’t directly compute b̂1√
var(b̂1)

as σ2
ε is unknown.

Solution: t-Statistic

Using σ̂2
ε as an estimate, we define: t = b̂1√

v̂ar(b̂1)

• t follows a T distribution with n − p − 1 degrees of freedom (Tn−p−1)
• We define a rejection region for the test statistic
• The cut-off should be ”extreme” enough to control Type I error
• We choose a cut-off such that t exceeds it only a predetermined proportion
of the time (e.g., 5% for α = 0.05)

Key Concept

The t-statistic allows us to standardize our estimate and compare it to a known
distribution, enabling hypothesis testing.
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Testing a single coefficient

Find the appropriate cut-off for a Tn−p−1 so that each shaded region has area α/2
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Understanding P-values

Definition
The p-value is the probability of observing a test statistic as extreme as, or more
extreme than, the one calculated from the sample data, assuming the null
hypothesis is true.

Common Misconception

Incorrect: The p-value is the probability that the null hypothesis is true.

Key Point

The p-value is about the data under H0, not about the probability of H0 itself.
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Understanding P-values

Definition
The p-value is the probability of observing a test statistic as extreme as, or more
extreme than, the one calculated from the sample data, assuming the null
hypothesis is true.

Practical Procedure:

1 Calculate the test statistic from sample data

2 Compute the p-value

3 Compare p-value to predetermined
significance level (α)

4 Reject H0 if p-value < α

Common Misconception

Incorrect: The p-value is the probability that the null hypothesis is true.

Key Point

The p-value is about the data under H0, not about the probability of H0 itself.
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Hypothesis test for single coefficient

Testing the hypothesis:

H0 : b1 = β (other coefficients are arbitrary)

HA : b1 ̸= β (other coefficients are arbitrary)

1 Set a level for the hypothesis test (typically .05)

2 Fit regression and estimate b̂1, v̂ar(b1)

3 Calculate

t =
b̂1 − β√
v̂ar(b1)

4 Calculate the p-value: the probability that an observation as or more extreme
than t would occur from a Tn−p−1

5 Reject the null hypothesis if the p-value is less than the predetermined level
(i.e., the observed value is very unlikely to happen under the null hypothesis)
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Why P-value ̸= Probability of Null Hypothesis

Common Misconception

”The p-value is the probability that the null hypothesis is true.”

Example: Coin Toss Experiment

Suppose we’re testing if a coin is fair (H0 : p = 0.5) or biased (H1 : p ̸= 0.5).

Scenario:

• We toss the coin 100 times

• We observe 60 heads

• This yields a p-value of 0.057

Interpretation:

• Incorrect: There’s a 5.7% chance
the coin is fair

• Correct: If the coin were fair,
there’s a 5.7% chance of observing
60 or more heads in 100 tosses

Why It’s False
• The p-value assumes H0 is true in its calculation

• It doesn’t consider prior probabilities or alternative hypotheses

• The true state of H0 is fixed (either true or false), not probabilistic
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Wrapup

• Statistical Hypothesis testing starts with a null hypothesis

• P-value: what is the probability of occurrence for the data we actually
observed

• Typically interested in testing if bk = 0; i.e., is covariate Xk associated with
Y conditional on all other covariates
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