Lecture 10: Hypothesis Test

Module 3: part 3

Spring 2025

Confidence Intervals: A Recap

Definition

Confidence Interval: A statistical procedure that produces an interval which, for a fixed proportion of the time (e.g., 95%), will contain the true parameter when applied to new data.

Confidence Intervals: A Recap

Definition

Confidence Interval: A statistical procedure that produces an interval which, for a fixed proportion of the time (e.g., 95%), will contain the true parameter when applied to new data.

- Represents a plausible range of values for the true parameter
- **Common Misconception**: "There's a 95% chance that the interval (1.5, 2.6) contains the true parameter"
- **Correct Interpretation**: Once computed, an interval either does or does not contain the true parameter
- Probability refers to the method's performance over hypothetical future samples

Confidence Interval Formula

For a new dataset, the $(1 - \alpha)$ confidence interval for b_1 is:

$$\left(\hat{b}_1 - t_{\alpha/2, n-p-1} \sqrt{\widehat{\mathsf{var}}(\hat{b}_1)}, \hat{b}_1 + t_{\alpha/2, n-p-1} \sqrt{\widehat{\mathsf{var}}(\hat{b}_1)}\right)$$

Confidence Interval Formula

For a new dataset, the $(1 - \alpha)$ confidence interval for b_1 is:

$$\left(\hat{b}_1 - t_{\alpha/2, n-p-1} \sqrt{\widehat{\operatorname{var}}(\hat{b}_1)}, \hat{b}_1 + t_{\alpha/2, n-p-1} \sqrt{\widehat{\operatorname{var}}(\hat{b}_1)}\right)$$

Simplified Notation

We can write:

$$\hat{b}_1 \pm t_{1-lpha/2,n-p-1} \sqrt{\widehat{ var}(\hat{b}_1)}$$

Scenario

Imagine you're a meteorologist predicting the average temperature for a city next summer. You estimate it to be 25°C (77°F) with a 95% confidence interval of 23°C to 27°C (73.4°F to 80.6°F).

Scenario

Imagine you're a meteorologist predicting the average temperature for a city next summer. You estimate it to be 25°C (77°F) with a 95% confidence interval of 23°C to 27°C (73.4°F to 80.6°F).

Correct Interpretation

- **Repeatability**: If you repeated this estimation many times, about 95% of the intervals would contain the true average temperature.

- **Fixed Outcome**: Once summer happens, the true average temperature is fixed; it either falls within your interval or it doesn't.

Scenario

Imagine you're a meteorologist predicting the average temperature for a city next summer. You estimate it to be 25°C (77°F) with a 95% confidence interval of 23°C to 27°C (73.4°F to 80.6°F).

Common Misinterpretations

- Incorrect: "There's a 95% chance the true average temperature is between 23°C and 27°C."
- Correct: The true average is fixed; it's either in the interval or not.
- Incorrect: "95% of daily temperatures will fall within this range."
- Correct: The interval is about the average temperature, not individual daily temperatures.
- Incorrect: "If we measure again next summer, there's a 95% chance it will fall in this range."
- Correct: This interval is about this specific estimation process, not future measurements.

Scenario

Imagine you're a meteorologist predicting the average temperature for a city next summer. You estimate it to be 25°C (77°F) with a 95% confidence interval of 23°C to 27°C (73.4°F to 80.6°F).

Conclusion

This analogy highlights that confidence intervals are about the reliability of the estimation method over many repetitions, not the specific estimate itself.

Questions

- All things equal, what will typically be wider? A 95% confidence interval or a 90% confidence interval?
- All things equal, what will typically be wider? A 95% confidence interval when n = 100 or when n = 500 where n is the number of observations?
- All things equal, what will typically be wider? A 95% confidence interval when p = 5 or when p = 10 where p is the number of predictors in the model?

Crash Course on Statistical Inference

Hypothesis Testing: A Basketball Analogy

The Claim

"I'm a really good basketball player and on average I score 20 points a game."

"In God we trust. All others must bring data." W. Edwards Deming

The Challenge

How can we verify this claim using data?

Claim: I score 20 points a game on average

• Scenario 1: You observe 2 games, average score = 18 points

Claim: I score 20 points a game on average

- Scenario 1: You observe 2 games, average score = 18 points
- Scenario 2: You observe 2 games, average score = 10 points

Claim: I score 20 points a game on average

- Scenario 1: You observe 2 games, average score = 18 points
- Scenario 2: You observe 2 games, average score = 10 points
- Scenario 3: You observe 25 games, average score = 10 points

Claim: I score 20 points a game on average

- Scenario 1: You observe 2 games, average score = 18 points
- Scenario 2: You observe 2 games, average score = 10 points
- Scenario 3: You observe 25 games, average score = 10 points

Claim: I score 20 points a game on average

- Scenario 1: You observe 2 games, average score = 18 points
- Scenario 2: You observe 2 games, average score = 10 points
- Scenario 3: You observe 25 games, average score = 10 points

Key Questions

- How do you decide whether to reject the claim?
- How much evidence is enough?
- What constitutes a "significant" difference from the claim?

The Logic of Hypothesis Testing

Claim: I score 20 points a game on average

Considerations:

- Initial trust in the claim
- "Normal range" of outcomes for a 20-point average player
- Observed data vs. expected outcomes

Decision Process:

- If observed outcome is **plausible**: Cannot rule out the claim
- If observed outcome is very unlikely: May reject the claim

Key Concept

Hypothesis testing involves comparing observed data against expected outcomes to make informed decisions about claims.

Hypothesis Testing Framework

Define Hypotheses

- Null hypothesis (*H*₀): "status quo"
- Alternative hypothesis (*H*₁): typically what the researcher aims to prove

Select Test Statistic

- Distribution known under H_0
- Distribution under *H*₁ not necessary

Collect Data & Calculate Statistic

Key Concept

Hypothesis testing is a systematic approach to making statistical decisions based on sample data and probability theory.

Calculate p-value

- Compare observed statistic to *H*₀ distribution
- P-value: probability of observing a statistic as or more extreme than observed, assuming *H*₀ is true

Oraw Conclusions

- Reject H_0 if p-value $< \alpha$
- Fail to reject H_0 if p-value $\geq \alpha$

Hypothesis Testing Errors

Decision Outcomes

- · We either reject or fail to reject the null hypothesis
- We don't confirm or accept the null hypothesis

	Null is rejected	Null is not rejected
Null is true	Type I error	\checkmark
Null is false	\checkmark	Type II error

Hypothesis Testing Errors

Decision Outcomes

- We either reject or fail to reject the null hypothesis
- We don't confirm or accept the null hypothesis

	Null is rejected	Null is not rejected	
Null is true	Type I error	\checkmark	
Null is false	\checkmark	Type II error	

Key Points

- Type I errors are typically considered more "costly" than Type II errors
- We limit the probability of Type I error to a certain significance level (α)
- Conventionally, $\alpha =$ 0.05, but this choice is somewhat arbitrary

Remember

The significance level (α) is the probability of rejecting the null hypothesis when it is actually true.

Type I and Type II Errors: Examples

Example: Rock Climbing Equipment

- Type I Error (False Positive):
 - Frank thinks his equipment is unsafe when it's actually safe
- Type II Error (False Negative):
 - Frank thinks his equipment is safe when it's actually unsafe

Question for Reflection

In a medical diagnosis scenario:

- What would be a Type I error?
- What would be a Type II error?

Example: Roulette Wheel

- Type I Error:
 - Concluding the wheel is biased when it's actually fair

• Type II Error:

• Failing to detect that the wheel is biased when it actually is

Hypothesis Testing in Linear Models

Common Tests in Linear Regression

We often test hypotheses about:

1 Individual Coefficients

- $H_0: \beta_i = 0$ (no effect)
- $H_1: \beta_i \neq 0$ (significant effect)

Octegorical Variables

- *H*₀: All category coefficients = 0
- H_1 : At least one category coefficient $\neq 0$

Model Comparison

- H₀: Additional variables don't improve the model
- H1: Additional variables significantly improve the model

Key Concept

These tests help us determine which variables are statistically significant predictors in our model.

Testing a Single Coefficient in Linear Regression

Model Assumption

Assume the following linear model:

$$Y_i = b_0 + b_1 X_1 + b_2 X_2 \dots b_p X_p + \varepsilon_i$$

where $\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2)$

Research Question

Does X_1 have a significant association with Y when controlling for X_2, X_3, \ldots, X_p ?

Hypotheses:

$$H_0: b_1 = 0$$

 $H_1: b_1 \neq 0$

Decision Rule:

- Reject H_0 if $|\hat{b_1}|$ is "large enough"
- But how large is "large enough"?

Key Consideration

We need to determine a threshold for $|\hat{b_1}|$ that balances Type I and Type II errors.

odu		

Testing a Single Coefficient: The t-Statistic

Challenge

We can't directly compute $\frac{\hat{b}_1}{\sqrt{\mathrm{var}(\hat{b}_1)}}$ as σ_{ε}^2 is unknown.

Solution: t-Statistic

Using $\hat{\sigma}_{\varepsilon}^2$ as an estimate, we define: $t = \frac{\hat{b}_1}{\sqrt{\hat{v}\hat{a}r}(\hat{b}_1)}$

- t follows a T distribution with n p 1 degrees of freedom (T_{n-p-1})
- We define a **rejection region** for the test statistic
- The cut-off should be "extreme" enough to control Type I error
- We choose a cut-off such that t exceeds it only a predetermined proportion of the time (e.g., 5% for $\alpha = 0.05$)

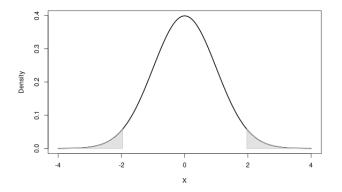
Key Concept

The t-statistic allows us to standardize our estimate and compare it to a known distribution, enabling hypothesis testing.

	part 3

Testing a single coefficient

Find the appropriate cut-off for a T_{n-p-1} so that each shaded region has area $\alpha/2$



Understanding P-values

Definition

The **p-value** is the probability of observing a test statistic as extreme as, or more extreme than, the one calculated from the sample data, assuming the null hypothesis is true.

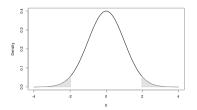
Understanding P-values

Definition

The **p-value** is the probability of observing a test statistic as extreme as, or more extreme than, the one calculated from the sample data, assuming the null hypothesis is true.

Practical Procedure:

- Calculate the test statistic from sample data
- Ompute the p-value
- Compare p-value to predetermined significance level (α)
- Seject H_0 if p-value < α



Understanding P-values

Definition

The **p-value** is the probability of observing a test statistic as extreme as, or more extreme than, the one calculated from the sample data, assuming the null hypothesis is true.

Common Misconception

Incorrect: The p-value is the probability that the null hypothesis is true.

Key Point

The p-value is about the data under H_0 , not about the probability of H_0 itself.

Hypothesis test for single coefficient

Testing the hypothesis:

 H_0 : $b_1 = \beta$ (other coefficients are arbitrary) H_A : $b_1 \neq \beta$ (other coefficients are arbitrary)

- Set a level for the hypothesis test (typically .05)
- **②** Fit regression and estimate \hat{b}_1 , $\widehat{var}(b_1)$

Calculate

$$t = \frac{\hat{b}_1 - \beta}{\sqrt{\widehat{\mathsf{var}}(b_1)}}$$

- Calculate the p-value: the probability that an observation as or more extreme than t would occur from a T_{n-p-1}
- Reject the null hypothesis if the p-value is less than the predetermined level (i.e., the observed value is very unlikely to happen under the null hypothesis)

Why P-value \neq Probability of Null Hypothesis

Common Misconception

"The p-value is the probability that the null hypothesis is true."

Example: Coin Toss Experiment

Suppose we're testing if a coin is fair ($H_0: p = 0.5$) or biased ($H_1: p \neq 0.5$).

Scenario:

- We toss the coin 100 times
- We observe 60 heads
- This yields a p-value of 0.057

Interpretation:

- Incorrect: There's a 5.7% chance the coin is fair
- Correct: If the coin were fair, there's a 5.7% chance of observing 60 or more heads in 100 tosses

Why It's False

- The p-value assumes H_0 is true in its calculation
- It doesn't consider prior probabilities or alternative hypotheses
- The true state of H_0 is fixed (either true or false), not probabilistic

Module 3: part 3

BTRY 6020

Wrapup

- Statistical Hypothesis testing starts with a null hypothesis
- P-value: what is the probability of occurrence for the data we actually observed
- Typically interested in testing if $b_k = 0$; i.e., is covariate X_k associated with Y conditional on all other covariates