## Lecture 11: Hypothesis Testing

Module 3: part 4

Spring 2025

# Logistics

• Continue hypothesis testing for linear models

# Hypothesis Testing: A Systematic Approach

#### Formulate Hypotheses

- *H*<sub>0</sub> (Null hypothesis): The "status quo" or "no effect" statement.
- $H_1$  or  $H_A$  (Alternative hypothesis): What we seek evidence for.
- Example:  $H_0: \mu = \mu_0$  vs.  $H_1: \mu \neq \mu_0$  (two-sided)
- **2** Choose an Appropriate Test Statistic
  - Select based on data type and hypothesis structure.
  - Common tests: t-test, z-test, chi-square, F-test, etc.
  - Verify assumptions required for the selected test.

## **(a)** Determine Significance Level ( $\alpha$ )

- Set *before* collecting data (typically  $\alpha = 0.05$  or 0.01).
- Represents the probability of Type I error (rejecting a true  $H_0$ ).

## **Sollect Data & Calculate Test Statistic**

- Ensure proper sampling techniques.
- Apply the selected statistical test formula.

### Oetermine p-value

- p-value = P(observing data at least as extreme as ours  $H_0$  is true).
- Lower p-values indicate stronger evidence against  $H_0$ .

## Oraw Conclusions

- If p-value  $\leq \alpha$ : Reject  $H_0$  (statistically significant result).
- If p-value >  $\alpha$ : Fail to reject  $H_0$  (insufficient evidence).
- Interpret in context of the original research question.

## Common Misconceptions About p-values

#### • What p-values are NOT:

- NOT the probability that  $H_0$  is true
- NOT the probability that results occurred by chance
- NOT an indicator of effect size or practical significance

#### • Statistical vs. Practical Significance

- Statistical significance: Evidence against  $H_0$  (p-value  $\leq \alpha$ )
- Practical significance: Meaningful real-world impact
- Large samples can detect tiny, practically irrelevant effects

#### • Types of Errors

- Type I Error: Rejecting H<sub>0</sub> when it's true (false positive)
- Type II Error: Failing to reject  $H_0$  when it's false (false negative)
- Power = 1 P(Type II Error) = Probability of correctly rejecting false  $H_0$

# Testing a Single Coefficient in Multiple Regression

## Model Specification

Assume the following linear model with normally distributed errors:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_p X_{ip} + \varepsilon_i$$

where  $\varepsilon_i \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$ 

## Research Question

Does  $X_1$  have a significant association with Y after controlling for  $X_2, X_3, \ldots, X_p$ ?

## Hypothesis Formulation

$$\begin{aligned} H_0 &: \beta_1 = \beta_{1,0} \quad \text{(typically } \beta_{1,0} = 0\text{)} \\ H_A &: \beta_1 \neq \beta_{1,0} \end{aligned}$$

Note: The values of other coefficients  $(\beta_0, \beta_2, ..., \beta_p)$  are not specified in these hypotheses.

# Testing a Single Regression Coefficient

# Test Statistic $t = \frac{\hat{\beta}_j - \beta_{j,0}}{\sqrt{\widehat{var}(\hat{\beta}_j)}}$

- Testing  $H_0: \beta_j = \beta_{j,0}$  vs.  $H_1: \beta_j \neq \beta_{j,0}$  (or one-sided alternatives)
- Under  $H_0$ ,  $t \sim T_{n-p-1}$  (Student's *t*-distribution with n p 1 degrees of freedom)
  - *n* = number of observations
  - *p* = number of predictors (excluding intercept)
- Critical region: Values of t that lead to rejecting  $H_0$ 
  - Two-sided test: Reject if  $|t| > t_{\alpha/2,n-p-1}$
  - One-sided test: Reject if  $t > t_{\alpha,n-p-1}$  or  $t < -t_{\alpha,n-p-1}$
- Significance level  $\alpha$  = probability of Type I error (rejecting  $H_0$  when true)
- Most common case: testing  $H_0$ :  $\beta_j = 0$  (no effect of predictor j)

## Testing a single coefficient

Find the appropriate cut-off for a  $T_{n-p-1}$  so that each shaded region has area  $\alpha/2$ 



# Understanding P-values

## Definition

The **p-value** is the probability of observing a test statistic as extreme or more extreme than the one we calculated, *assuming the null hypothesis is true*.

- Equivalent to the rejection region approach:
  - Reject  $H_0$  if p-value  $< \alpha$
  - Fail to reject  $H_0$  if p-value  $\geq \alpha$
- For two-sided tests: p-value =  $2 \times P(|T| > |t_{observed}|)$
- For upper one-sided tests: p-value = P(T > t<sub>observed</sub>)
- For lower one-sided tests: p-value = P(T < t<sub>observed</sub>)

#### **Common Misconceptions**

The p-value is the probability that the null hypothesis is true.

#### Correct Interpretation

A p-value of 0.03 means: If the null hypothesis were true, we would observe a test statistic at least as extreme as ours in only 3% of repeated experiments.

# Hypothesis Testing for a Single Regression Coefficient

#### Is Formulate Hypotheses

- $H_0: \beta_j = \beta_{j,0}$  (typically  $\beta_{j,0} = 0$ )
- $H_A: \beta_j \neq \beta_{j,0}$  (or one-sided)

## **2** Choose Significance Level

- Set α (typically 0.05)
- **3** Fit Regression Model
  - Obtain  $\hat{\beta}_j$  and SE( $\hat{\beta}_j$ )

## Calculate Test Statistic

• 
$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{\mathsf{SE}(\hat{\beta}_j)}$$

#### Oetermine p-value

•  $p = 2 \times P(|T_{n-p-1}| > |t|)$  for two-sided test

#### Oraw Conclusion

- Reject  $H_0$  if  $p < \alpha$
- Fail to reject  $H_0$  if  $p \ge \alpha$

# The Duality of Hypothesis Tests and Confidence Intervals

Confidence Interval (CI) for  $\beta_1$  at level  $1 - \alpha$ 

$$\hat{\beta}_1 \pm t_{\alpha/2, n-p-1} \cdot \mathsf{SE}(\hat{\beta}_1) = \hat{\beta}_1 \pm t_{\alpha/2, n-p-1} \cdot \sqrt{\mathsf{var}}(\hat{\beta}_1) \tag{1}$$

Or written as an interval:

$$\left[\hat{\beta}_{1} - t_{\alpha/2, n-p-1} \cdot \mathsf{SE}(\hat{\beta}_{1}), \ \hat{\beta}_{1} + t_{\alpha/2, n-p-1} \cdot \mathsf{SE}(\hat{\beta}_{1})\right]$$
(2)

### Key Insight

If a value  $\beta_{1,0}$  is included in the  $(1 - \alpha)$  confidence interval, then:

$$\left|\frac{\hat{\beta}_1 - \beta_{1,0}}{\mathsf{SE}(\hat{\beta}_1)}\right| < t_{\alpha/2,n-p-1} \tag{3}$$

This means we would fail to reject the null hypothesis  $H_0$ :  $\beta_1 = \beta_{1,0}$  at significance level  $\alpha$ .

| Module 3: part 4 | BTRY 6020 | Spring 2025 | 10 / 20 |
|------------------|-----------|-------------|---------|

## Hypothesis Test vs Confidence Interval



- $\beta_A$ : Inside CI  $\Rightarrow$  Fail to reject  $H_0: \beta_1 = \beta_A$
- $\beta_B$ ,  $\beta_C$ : Outside CI  $\Rightarrow$  Reject  $H_0: \beta_1 = \beta_B$  or  $H_0: \beta_1 = \beta_C$

### Equivalence Relationships

- CI contains zero  $\Leftrightarrow$  Fail to reject  $H_0: \beta_1 = 0$
- CI excludes zero  $\Leftrightarrow$  Reject  $H_0: \beta_1 = 0$
- CI width  $\propto$  Standard error of  $\hat{eta}_1$

# **Testing Multiple Coefficients**

# Testing Multiple Coefficients Simultaneously

Model Setup

$$Y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,3} + \beta_4 X_{i,4} + \ldots + \beta_p X_{i,p} + \varepsilon_i$$

Joint Hypothesis

 $H_0: \beta_1 = \beta_2 = \beta_3 = 0$  (other coefficients unrestricted)  $H_A:$  At least one of  $\beta_1, \beta_2, \beta_3$  is non-zero

# Testing Multiple Coefficients Simultaneously

## Multiple Testing Problem

Individual tests at  $\alpha = 5\%$  level lead to inflated family-wise error rate:

| # of tests p | P(false rej.) |  |
|--------------|---------------|--|
| 1            | 0.05          |  |
| 2            | 0.975         |  |
| 5            | 0.2262        |  |
| 10           | 0.4013        |  |
| 20           | 0.6415        |  |

$$P(FR) = 1 - (1 - \alpha)^{p}$$
 (ind.)



Figure: Family-wise error rate increases with number of tests

## Solutions

- **F-test**: Tests joint significance of multiple coefficients (appropriate for our hypothesis).
- Bonferroni correction: Adjust individual test  $\alpha$  levels by dividing by the number of tests.

# F-test: Testing Multiple Coefficients Simultaneously

## Joint Hypothesis

 $H_0: \beta_1 = \beta_2 = \beta_3 = 0$  (other coefficients unrestricted)

 $H_A$ : At least one of  $\beta_1, \beta_2, \beta_3$  is non-zero

## F-test Approach

- Fit two models:
  - Full model: All predictors included
  - **Restricted model:** Set  $\beta_1 = \beta_2 = \beta_3 = 0$
- Oalculate the F-statistic:

$$F = \frac{(RSS_{restricted} - RSS_{full})/q}{RSS_{full}/(n - p - 1)}$$

where:

- *RSS* = Residual Sum of Squares
- q = Number of restrictions (here q = 3)
- n = Sample size
- p = Number of predictors in full model

$$F(q, n - p - 1)$$

## F-test for Nested Models

#### Hypothesis Setup:

- $H_0$ : The excluded variables have no effect on the response.
- *H*<sub>1</sub>: At least one of the excluded variables contributes significantly. **Models:** 
  - Alternative model (full model):

 $Y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \beta_4 x_{i,4} + \ldots + \beta_p x_{i,p} + \varepsilon_i$ 

• Null model (reduced model):

$$Y_i = \beta_0 + \underbrace{0 \cdot x_{i,1} + 0 \cdot x_{i,2} + 0 \cdot x_{i,3}}_{\bullet} + \beta_4 x_{i,4} + \ldots + \beta_p x_{i,p} + \varepsilon_i$$

excluded variables

## F-test for Nested Models

#### Hypothesis Setup:

- $H_0$ : The excluded variables have no effect on the response.
- *H*<sub>1</sub>: At least one of the excluded variables contributes significantly. **Models:** 
  - Alternative model (full model):

 $Y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \beta_4 x_{i,4} + \ldots + \beta_p x_{i,p} + \varepsilon_i$ 

• Null model (reduced model):

excluded variables

F-statistic:

$$F = \frac{(\mathsf{RSS}_{\mathsf{null}} - \mathsf{RSS}_{\mathsf{alt}})/d_f}{\mathsf{RSS}_{\mathsf{alt}}/d_f}$$

where RSS is the residual sum of squares and  $d_f$  denotes degrees of freedom.

# F-test for Nested Models

#### Hypothesis Setup:

- $H_0$ : The excluded variables have no effect on the response.
- *H*<sub>1</sub>: At least one of the excluded variables contributes significantly. **Models:** 
  - Alternative model (full model):

 $Y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \beta_4 x_{i,4} + \ldots + \beta_p x_{i,p} + \varepsilon_i$ 

• Null model (reduced model):

$$Y_i = \beta_0 + \underbrace{0 \cdot x_{i,1} + 0 \cdot x_{i,2} + 0 \cdot x_{i,3}}_{+\beta_4 x_{i,4} + \dots + \beta_p x_{i,p} + \varepsilon_i}$$

excluded variables

F-statistic:

$$F = \frac{(\mathsf{RSS}_{\mathsf{null}} - \mathsf{RSS}_{\mathsf{alt}})/d_f}{\mathsf{RSS}_{\mathsf{alt}}/d_f}$$

where RSS is the residual sum of squares and  $d_f$  denotes degrees of freedom. Interpretation:

- If F is large, the additional variables improve the model significantly.
- The F-test follows an F-distribution under  $H_0$ .
- If p-value < lpha, reject  $H_0$  and conclude that the excluded variables matter.

Module 3: part 4

Under the alternative hypothesis, we can fit an **alternative model**: If the null hypothesis is false, we would expect

$$\underbrace{\sum_{i} (y_{i} - \tilde{y}_{i})^{2}}_{RSS(\tilde{b}_{0}, \tilde{b}_{1}, \tilde{b}_{2} \dots \tilde{b}_{\rho})} < \underbrace{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}_{RSS(\hat{b}_{0}, \hat{b}_{1} = 0, \hat{b}_{2} = 0, \hat{b}_{3} = 0, \hat{b}_{4}, \dots \hat{b}_{\rho})}$$

Under the alternative hypothesis, we can fit an **alternative model**: If the null hypothesis is false, we would expect

$$\underbrace{\sum_{i} (y_{i} - \tilde{y}_{i})^{2}}_{RSS(\tilde{b}_{0}, \tilde{b}_{1}, \tilde{b}_{2} \dots \tilde{b}_{\rho})} < \underbrace{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}_{RSS(\hat{b}_{0}, \hat{b}_{1} = 0, \hat{b}_{2} = 0, \hat{b}_{3} = 0, \hat{b}_{4}, \dots \hat{b}_{\rho})}$$

But even if the null hypothesis is true, we would expect

$$RSS(\tilde{b}_0, \tilde{b}_1, \tilde{b}_2 \dots \tilde{b}_p) \leq RSS(\hat{b}_0, \hat{b}_1 = 0, \hat{b}_2 = 0, \hat{b}_3 = 0, \hat{b}_4, \dots \hat{b}_p)$$

- Null model is always a choice under the alternative model
- When given more options, the minimizer cannot be worse
- If all the covariates of model A are included in model B and the dependent variables are the same, then we say model A is **nested** in model B

We want

- A statistic which is *extreme* when the null hypothesis is false.
- A statistic whose distribution we can describe under the null hypothesis.

RSS(Null) - RSS(Alt)

We want

- A statistic which is *extreme* when the null hypothesis is false.
- A statistic whose distribution we can describe under the null hypothesis.

$$\frac{RSS(H_0) - RSS(H_1)}{p_0 - p_1}$$

where  $p_0$  and  $p_1$  are the number of parameters (not including the intercept) which are being estimated in the null and alternative models respectively.

We want

- A statistic which is *extreme* when the null hypothesis is false.
- A statistic whose distribution we can describe under the null hypothesis.

$$F = \frac{[RSS(H_0) - RSS(H_1)]/(p_1 - p_0)}{RSS(H_1)/(n - p_1 - 1)}$$

where  $p_{alt}$  and  $p_{null}$  are the number of parameters (not including the intercept) which are being estimated in the null and alternative models

# **F-distributions**

F distributions have two parameters:  $df_1$  and  $df_2$ 



- For our statistic,  $df_1 = p_{alt} p_{null}$
- For our statistic,  $df_2 = n p_{alt} 1$

Module 3: part 4

# Wrapup

- Hypothesis testing in Linear models
- Can test a single coefficient using T-test
- Can test several coefficients at once using F-test