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Logistics

• Continue hypothesis testing for linear models
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Hypothesis Testing: A Systematic Approach

1 Formulate Hypotheses
• H0 (Null hypothesis): The ”status quo” or ”no effect” statement.
• H1 or HA (Alternative hypothesis): What we seek evidence for.
• Example: H0 : µ = µ0 vs. H1 : µ ̸= µ0 (two-sided)

2 Choose an Appropriate Test Statistic
• Select based on data type and hypothesis structure.
• Common tests: t-test, z-test, chi-square, F-test, etc.
• Verify assumptions required for the selected test.

3 Determine Significance Level (α)
• Set before collecting data (typically α = 0.05 or 0.01).
• Represents the probability of Type I error (rejecting a true H0).

4 Collect Data & Calculate Test Statistic
• Ensure proper sampling techniques.
• Apply the selected statistical test formula.

5 Determine p-value
• p-value = P(observing data at least as extreme as ours — H0 is true).
• Lower p-values indicate stronger evidence against H0.

6 Draw Conclusions
• If p-value ≤ α: Reject H0 (statistically significant result).
• If p-value > α: Fail to reject H0 (insufficient evidence).
• Interpret in context of the original research question.
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Common Misconceptions About p-values

• What p-values are NOT:
• NOT the probability that H0 is true
• NOT the probability that results occurred by chance
• NOT an indicator of effect size or practical significance

• Statistical vs. Practical Significance
• Statistical significance: Evidence against H0 (p-value ≤ α)
• Practical significance: Meaningful real-world impact
• Large samples can detect tiny, practically irrelevant effects

• Types of Errors
• Type I Error: Rejecting H0 when it’s true (false positive)
• Type II Error: Failing to reject H0 when it’s false (false negative)
• Power = 1 - P(Type II Error) = Probability of correctly rejecting false H0
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Testing a Single Coefficient in Multiple Regression

Model Specification

Assume the following linear model with normally distributed errors:

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βpXip + εi

where εi ∼ N (0, σ2
ε)

Research Question
Does X1 have a significant association with Y after controlling for X2,X3, . . . ,Xp?

Hypothesis Formulation

H0 : β1 = β1,0 (typically β1,0 = 0)

HA : β1 ̸= β1,0

Note: The values of other coefficients (β0, β2, . . . , βp) are not specified in these
hypotheses.

• Intuition: Reject H0 if |β̂1 − β1,0| is ”large”
• But how large is ”large enough” to justify rejection?
• Need to account for sampling variability in β̂1

• Solution: Use the standardized test statistic:

t =
β̂1 − β1,0

SE(β̂1)

• Under H0, t ∼ Tn−p−1 distribution
• Reject H0 if |t| > tcritical where tcritical = tα/2,n−p−1
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Testing a Single Regression Coefficient

Test Statistic

t =
β̂j − βj,0√
v̂ar(β̂j)

• Testing H0 : βj = βj,0 vs. H1 : βj ̸= βj,0 (or one-sided alternatives)

• Under H0, t ∼ Tn−p−1 (Student’s t-distribution with n − p − 1 degrees of
freedom)

• n = number of observations
• p = number of predictors (excluding intercept)

• Critical region: Values of t that lead to rejecting H0

• Two-sided test: Reject if |t| > tα/2,n−p−1

• One-sided test: Reject if t > tα,n−p−1 or t < −tα,n−p−1

• Significance level α = probability of Type I error (rejecting H0 when true)

• Most common case: testing H0 : βj = 0 (no effect of predictor j)
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Testing a single coefficient

Find the appropriate cut-off for a Tn−p−1 so that each shaded region has area α/2
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Understanding P-values

Definition
The p-value is the probability of observing a test statistic as extreme or more
extreme than the one we calculated, assuming the null hypothesis is true.

• Equivalent to the rejection region approach:
• Reject H0 if p-value < α
• Fail to reject H0 if p-value ≥ α

• For two-sided tests: p-value = 2× P(|T | > |tobserved|)
• For upper one-sided tests: p-value = P(T > tobserved)
• For lower one-sided tests: p-value = P(T < tobserved)

Common Misconceptions

The p-value is the probability that the null hypothesis is true.

Correct Interpretation

A p-value of 0.03 means: If the null hypothesis were true, we would observe a test
statistic at least as extreme as ours in only 3% of repeated experiments.
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Hypothesis Testing for a Single Regression Coefficient

1 Formulate Hypotheses
• H0 : βj = βj,0 (typically βj,0 = 0)
• HA : βj ̸= βj,0 (or one-sided)

2 Choose Significance Level
• Set α (typically 0.05)

3 Fit Regression Model
• Obtain β̂j and SE(β̂j)

4 Calculate Test Statistic
• t =

β̂j−βj,0

SE(β̂j )

5 Determine p-value
• p = 2× P(|Tn−p−1| > |t|) for two-sided test

6 Draw Conclusion
• Reject H0 if p < α
• Fail to reject H0 if p ≥ α
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The Duality of Hypothesis Tests and Confidence Intervals

Confidence Interval (CI) for β1 at level 1− α

β̂1 ± tα/2,n−p−1 · SE(β̂1) = β̂1 ± tα/2,n−p−1 ·
√
v̂ar(β̂1) (1)

Or written as an interval:[
β̂1 − tα/2,n−p−1 · SE(β̂1), β̂1 + tα/2,n−p−1 · SE(β̂1)

]
(2)

Key Insight

If a value β1,0 is included in the (1− α) confidence interval, then:∣∣∣∣∣ β̂1 − β1,0

SE(β̂1)

∣∣∣∣∣ < tα/2,n−p−1 (3)

This means we would fail to reject the null hypothesis H0 : β1 = β1,0 at
significance level α.
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Hypothesis Test vs Confidence Interval

β1
βAβB βC

β̂1

95% Confidence Interval

• βA: Inside CI ⇒ Fail to reject
H0 : β1 = βA

• βB , βC : Outside CI ⇒ Reject
H0 : β1 = βB or H0 : β1 = βC

Equivalence Relationships
• CI contains zero ⇔ Fail to reject H0 : β1 = 0

• CI excludes zero ⇔ Reject H0 : β1 = 0

• CI width ∝ Standard error of β̂1
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Testing Multiple Coefficients
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Testing Multiple Coefficients Simultaneously

Model Setup

Yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + β4Xi,4 + . . .+ βpXi,p + εi

Joint Hypothesis

H0 : β1 = β2 = β3 = 0 (other coefficients unrestricted)

HA : At least one of β1, β2, β3 is non-zero
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Testing Multiple Coefficients Simultaneously

Multiple Testing Problem

Individual tests at α = 5% level lead
to inflated family-wise error rate:

# of tests p P(false rej.)
1 0.05
2 0.975
5 0.2262
10 0.4013
20 0.6415

P(FR) = 1− (1− α)p (ind.)

# of tests

Error rate

α = 0.05

Figure: Family-wise error rate increases with
number of tests

Solutions
• F-test: Tests joint significance of multiple coefficients (appropriate for our

hypothesis).

• Bonferroni correction: Adjust individual test α levels by dividing by the
number of tests.
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F-test: Testing Multiple Coefficients Simultaneously
Joint Hypothesis

H0 : β1 = β2 = β3 = 0 (other coefficients unrestricted)

HA : At least one of β1, β2, β3 is non-zero

F-test Approach
1 Fit two models:

• Full model: All predictors included
• Restricted model: Set β1 = β2 = β3 = 0

2 Calculate the F-statistic:

F =
(RSSrestricted − RSSfull)/q

RSSfull/(n − p − 1)

where:
• RSS = Residual Sum of Squares
• q = Number of restrictions (here q = 3)
• n = Sample size
• p = Number of predictors in full model

F
Rejection region
Fcritical0

F (q, n − p − 1)

Figure: F distribution with
rejection region

Decision Rule
• Reject H0 if F > Fcritical

• Fcritical = F1−α,q,n−p−1

• Typical α = 0.05
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F-test for Nested Models

Hypothesis Setup:
• H0: The excluded variables have no effect on the response.
• H1: At least one of the excluded variables contributes significantly.

Models:
• Alternative model (full model):

Yi = β0 + β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4 + . . .+ βpxi,p + εi

• Null model (reduced model):

Yi = β0 + 0 · xi,1 + 0 · xi,2 + 0 · xi,3︸ ︷︷ ︸
excluded variables

+β4xi,4 + . . .+ βpxi,p + εi

F-statistic:

F =
(RSSnull − RSSalt)/df

RSSalt/df

where RSS is the residual sum of squares and df denotes degrees of freedom.
Interpretation:
• If F is large, the additional variables improve the model significantly.
• The F-test follows an F -distribution under H0.
• If p-value < α, reject H0 and conclude that the excluded variables matter.
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F-test

Under the alternative hypothesis, we can fit an alternative model: If the null
hypothesis is false, we would expect∑

i

(yi − ỹi )
2

︸ ︷︷ ︸
RSS(b̃0,b̃1,b̃2...b̃p)

<
∑
i

(yi − ŷi )
2

︸ ︷︷ ︸
RSS(b̂0,b̂1=0,b̂2=0,b̂3=0,b̂4,...b̂p)

But even if the null hypothesis is true, we would expect

RSS(b̃0, b̃1, b̃2 . . . b̃p) ≤ RSS(b̂0, b̂1 = 0, b̂2 = 0, b̂3 = 0, b̂4, . . . b̂p)

• Null model is always a choice under the alternative model

• When given more options, the minimizer cannot be worse

• If all the covariates of model A are included in model B and the dependent
variables are the same, then we say model A is nested in model B
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F-test

We want

• A statistic which is extreme when the null hypothesis is false.

• A statistic whose distribution we can describe under the null hypothesis.

RSS(Null)− RSS(Alt)

.
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F-test

We want

• A statistic which is extreme when the null hypothesis is false.

• A statistic whose distribution we can describe under the null hypothesis.

RSS(H0)− RSS(H1)

p0 − p1

where p0 and p1 are the number of parameters (not including the intercept) which
are being estimated in the null and alternative models respectively.
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F-test

We want

• A statistic which is extreme when the null hypothesis is false.

• A statistic whose distribution we can describe under the null hypothesis.

.

F =
[RSS(H0)− RSS(H1)]/(p1 − p0)

RSS(H1)/(n − p1 − 1)

where palt and pnull are the number of parameters (not including the intercept)
which are being estimated in the null and alternative models
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F-distributions

F distributions have two parameters: df1 and df2

• For our statistic, df1 = palt − pnull
• For our statistic, df2 = n − palt − 1
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Wrapup

• Hypothesis testing in Linear models

• Can test a single coefficient using T-test

• Can test several coefficients at once using F-test
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