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Logistics

® End of Module 3 today
® lab will cover Hypothesis testing
® Module 3 assessment up today, due Mar 16
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Hypothesis Testing Errors: Types and Consequences

Null Not Rejected | Null Rejected
Correct Decision

Null is True (Probability Type I.FTrror
1) (Probability «)
Type IT Error Correct Decision

Null is False

(Probability 3) (Power = 1—73)

Type | Error (False Positive) Type Il Error (False Negative)
® Rejecting Hp when it is actually ® Failing to reject Hp when it is
true actually false
® Probability controlled by ® Probability denoted as 3
significance level o ¢ Depends on:
® Typically set to 0.05 (5%) ® True effect size
® More "costly” in most research ® Sample size
® Data variability
contexts o Groe
Significance level o
® Example: Claiming a drug
works when it doesn't

v
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Hypothesis Testing for a Single Regression Coefficient

Hypothesis Formulation
Ho : 81 =0 (Null Hypothesis)

Ha : B1 #0 (Alternative Hypothesis)

Test Statistic

‘o 31 _ Point Estimate
- SE(ﬁl) " Standard Error

Interpretation of the test statistic:

® Measures how many standard errors the estimate is
from zero

® |arge absolute values suggest the coefficient is
significantly different from zero

Decision rule:
® Reject Ho if [t| > to/2,n—p—1
® Equivalent to p-value < «
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Distribution under Hy:

® Follows a
t-distribution with
n— p — 1 degrees
of freedom

® n: number of
observations

® p: number of
predictors
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F-test: Hypothesis Testing in Multiple Regression

Suppose the data is generated by the following regression model:

Yi=bo+ b1 Xi1+ boXio+ b3 Xizs+ baXig+ ...+ bpXip +¢;

Hypothesis Formulation
® Null Hypothesis Hy: by = b, = b3 =0
® Alternative Hypothesis H;: At least one b; # 0 for j € {1,2,3}
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F-test: Hypothesis Testing in Multiple Regression

Suppose the data is generated by the following regression model:

Yi=bo+ b1 Xi1+ boXio+ b3 Xi 3+ bsXja+ ... 4+ bpXip+¢i

Hypothesis Formulation
® Null Hypothesis Hy: by = b, = b3 =0
® Alternative Hypothesis H;: At least one b; # 0 for j € {1,2,3}

Model Comparison Approach:
¢ Alternative Model (Full Model):

Yi = Z70 + lei,l + EZXi,2 + B3Xi,3 + E4Xi,4 +...+ BpXi,p +ei
® Null Model (Restricted Model):

Y,':Bo—l—O'X;,l+O~X,;2+O~X,33+B4X;74—|—...—|—Bpxi)p—|—€,'
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F-test: Hypothesis Testing in Multiple Regression

Suppose the data is generated by the following regression model:

Yi=bo+ b1 Xi1+ boXio+ b3 Xi 3+ bsXja+ ... 4+ bpXip+¢i

Hypothesis Formulation
® Null Hypothesis Hy: by = b, = b3 =0
® Alternative Hypothesis H;: At least one b; # 0 for j € {1,2,3}

Model Comparison Approach:
¢ Alternative Model (Full Model):

Yi = Z70 + lei,l + 52Xi,2 + B3Xi,3 + E4Xi,4 +...+ BpXi,p +ei
® Null Model (Restricted Model):
Y, = Bo—l—O'X,'Tl+0~X,‘A2+O~X,'A’3+B4X;74—|—...—|—Bpxi)p—|—6,'

F-statistic:

F_ [RSS(Null) — RSS(AIt)]/(pait — Prun)
RSS(AI)/(n — par — 1)
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Multiple Hypothesis Testing: Motivation and Challenges

What are Multiple Hypothesis Tests?
® Scenarios involving simultaneous testing of numerous hypotheses
® Prevalent in fields with large-scale data exploration
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Multiple Hypothesis Testing: Motivation and Challenges

What are Multiple Hypothesis Tests?

® Scenarios involving simultaneous testing of numerous hypotheses

® Prevalent in fields with large-scale data exploration
Even when the Type | error is controlled for each specific test, false positives may
happen frequently when testing many hypotheses

08

Prob of atleast 1 Type lerror

T T T T T T
o 10 20 30 40 50
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Multiple testing

® Instead of controlling Type | error for each individual test, we might try to
control the Family-wise error rate
® Family-wise error rate: What is the probability that at least 1 false positive

occurs?
P(at least one false positive) < «

Module 3: part 5 Spring 2025 7/14



Bonferroni Procedure: A Conservative Approach

Basic Principle

When conducting m simultaneous hypothesis tests, adjust the significance level to:

New Significance Level = %

Practical Example:
® Original significance level: o = 0.05
® Number of simultaneous tests: m = 1000
® Bonferroni-corrected significance level: 0.05/1000 = 0.00005
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Bonferroni Procedure: A Conservative Approach

Basic Principle

When conducting m simultaneous hypothesis tests, adjust the significance level to:

New Significance Level = %

Practical Example:

® Original significance level: o = 0.05

® Number of simultaneous tests: m = 1000

® Bonferroni-corrected significance level: 0.05/1000 = 0.00005
Equivalent P-value Adjustment:

® Original p-value: p;

® Adjusted p-value: g = m x p;

® Reject null hypothesis if p; < «

Module 3: part 5 Spring 2025 8/14



Bonferroni Procedure: A Conservative Approach

Basic Principle

When conducting m simultaneous hypothesis tests, adjust the significance level to:

New Significance Level = ad
m

Practical Example:
® Original significance level: o = 0.05
® Number of simultaneous tests: m = 1000
® Bonferroni-corrected significance level: 0.05/1000 = 0.00005
Equivalent P-value Adjustment:
® Original p-value: p;
® Adjusted p-value: g = m x p;
® Reject null hypothesis if p; < «
Key Characteristics:
® Extremely conservative method
® Guarantees control of Family-Wise Error Rate (FWER)
® Dramatically reduces the chance of Type | errors
® Comes at the cost of statistical power
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Holm Procedure: Controlling Family-Wise Error Rate
(FWER)

Purpose: Control the probability of making at least one Type | error when
performing multiple hypothesis tests

Procedure Steps

Given m total hypotheses and significance level a:
@ Sort p-values from smallest to largest: p1) < p2) < ... < pim)

@ Sequentially test hypotheses using adjusted significance levels:
® First test: py) < <
® Second test: p) < %5

® j-th test: p;) < m%ﬁl
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FWER: Balancing Type | Error Control and Statistical
Power

Key Considerations
® Strict Criterion: Minimizing the probability of at least one Type | error
® Trade-off: Stringent control comes at the cost of reduced statistical power

Advantages of FWER Control Limitations
® Prevents false discoveries ® Qverly conservative
® Provides strong Type | error ® Reduces ability to detect true effects
protection
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FWER: Balancing Type | Error Control and Statistical
Power

Key Considerations
® Strict Criterion: Minimizing the probability of at least one Type | error
® Trade-off: Stringent control comes at the cost of reduced statistical power

Advantages of FWER Control Limitations
® Prevents false discoveries ® Qverly conservative
® Provides strong Type | error ® Reduces ability to detect true effects
protection

Comparative Methods:
® Holm procedure offers more power than Bonferroni

® Suggests a potential compromise between error control and statistical power
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FWER: Balancing Type | Error Control and Statistical
Power

Key Considerations
® Strict Criterion: Minimizing the probability of at least one Type | error
® Trade-off: Stringent control comes at the cost of reduced statistical power

Advantages of FWER Control Limitations
® Prevents false discoveries ® Qverly conservative
® Provides strong Type | error ® Reduces ability to detect true effects
protection

Comparative Methods:
® Holm procedure offers more power than Bonferroni
® Suggests a potential compromise between error control and statistical power

Emerging Question: Can we develop methods that allow more Type | errors
while maintaining reasonable control?

Soring 3035 e



False Discovery Rate: Quantifying Multiple Testing Errors

Contingency Table of Hypothesis Testing

Rejected | Not Rejected Total

Null True A B A+B

Null False C D C+D
Total A+ C B+ D m

Error Metrics
® False Positive Rate:

A
A+ B
Proportion of true nulls
incorrectly rejected

® False Discovery Rate:

A

A+C

Proportion of rejected
hypotheses that are false
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False Discovery Rate: Quantifying Multiple Testing Errors

Contingency Table of Hypothesis Testing Error Metrics

Rejected | Not Rejected Total * False Positive Rate:
Null True A B A+B A
Null False C D C+D T o
A+ B
Total A+C B+ D m +

Proportion of true nulls
incorrectly rejected

® False Discovery Rate:

A

A+C

Proportion of rejected
hypotheses that are false

Goal: Control the expected proportion of false discoveries
A
El_2
(+%e)
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Benjamini-Hochberg Procedure: Controlling False
Discovery Rate

Setup: Testing m hypotheses with significance level a

Procedure Steps

© Sort p-values from smallest to largest: pu) < p) < ... < p(m)
@ Sequentially test hypotheses:

® Reject if pj) < Ln',oz

® Stop when p(j) > Lo
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Benjamini-Hochberg Procedure: Controlling False
Discovery Rate

Setup: Testing m hypotheses with significance level a
Procedure Steps

© Sort p-values from smallest to largest: pu) < p) < ... < p(m)
@ Sequentially test hypotheses:

® Reject if pj) < Ln',oz

® Stop when p(j) > Lo

Alternative Formulation:
® Adjusted p-values: fjy = pgy(m/J)
® Reject for j = 1,2,...,J where J is the largest index with j;) < «
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Benjamini-Hochberg Procedure: Controlling False
Discovery Rate

Setup: Testing m hypotheses with significance level a

Procedure Steps

© Sort p-values from smallest to largest: pu) < p) < ... < p(m)
@ Sequentially test hypotheses:

® Reject if pj) < Ln',oz

® Stop when p(j) > Lo

Alternative Formulation:

® Adjusted p-values: fjy = pgy(m/J)

® Reject for j = 1,2,...,J where J is the largest index with j;) < «
Key Assumption:

® Assumes independence between hypothesis tests

® Works best when tests are not strongly correlated
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Benjamini-Yekutieli Procedure: Robust FDR Control

Purpose: Control False Discovery Rate without assuming test independence

Procedure Details
® Sort p-values from smallest to largest: pu) < p2) < ... < p(m)
® Rejection criterion:

J
N A
PG) = my ", i

® Continue until first p;) fails this condition
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Benjamini-Yekutieli Procedure: Robust FDR Control

Purpose: Control False Discovery Rate without assuming test independence
Procedure Details

® Sort p-values from smallest to largest: pu) < p2) < ... < p(m)
® Rejection criterion: _
J

<2

Pu) = my it

® Continue until first p;) fails this condition

Key Characteristics:
® Works with dependent and independent hypothesis tests
® More conservative than Benjamini-Hochberg procedure

® Accounts for potential correlations between tests
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Benjamini-Yekutieli Procedure: Robust FDR Control

Purpose: Control False Discovery Rate without assuming test independence

Procedure Details
® Sort p-values from smallest to largest: pu) < p2) < ... < p(m)

® Rejection criterion:

J
N A
PG) = my ", i

® Continue until first p;) fails this condition

Key Characteristics:
® Works with dependent and independent hypothesis tests
® More conservative than Benjamini-Hochberg procedure
® Accounts for potential correlations between tests
Computational Insight:
® Introduces a correction factor y ., it

® Provides more robust error rate control across various testing scenarios
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Summary

Controlling the Type | error can come at the cost of lower power

® When testing many hypothesis, the number of false positives can grow

Controlling family wise error rate ensures no false positives with high
probability, but increases Type Il error

Controlling False Discovery Rate allow some (but not too many) false
positives and does not lose as much power
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