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Logistics

• End of Module 3 today

• Lab will cover Hypothesis testing

• Module 3 assessment up today, due Mar 16
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Hypothesis Testing Errors: Types and Consequences

Null Not Rejected Null Rejected

Null is True
Correct Decision
(Probability

1− α)

Type I Error
(Probability α)

Null is False
Type II Error
(Probability β)

Correct Decision
(Power = 1−β)

Type I Error (False Positive)

• Rejecting H0 when it is actually
true

• Probability controlled by
significance level α

• Typically set to 0.05 (5%)

• More ”costly” in most research
contexts

• Example: Claiming a drug
works when it doesn’t

Type II Error (False Negative)

• Failing to reject H0 when it is
actually false

• Probability denoted as β

• Depends on:
• True effect size
• Sample size
• Data variability
• Significance level α
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Hypothesis Testing for a Single Regression Coefficient

Hypothesis Formulation

H0 : β1 = 0 (Null Hypothesis)

HA : β1 ̸= 0 (Alternative Hypothesis)

Test Statistic

t =
β̂1

SE(β̂1)
=

Point Estimate

Standard Error

Interpretation of the test statistic:

• Measures how many standard errors the estimate is
from zero

• Large absolute values suggest the coefficient is
significantly different from zero

Decision rule:

• Reject H0 if |t| > tα/2,n−p−1

• Equivalent to p-value < α

Distribution under H0:

• Follows a
t-distribution with
n − p − 1 degrees
of freedom

• n: number of
observations

• p: number of
predictors

Key Insights
• A significant result indicates strong evidence that β1 ̸= 0

• Practical significance depends on context, not just statistical significance
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F-test: Hypothesis Testing in Multiple Regression

Suppose the data is generated by the following regression model:

Yi = b0 + b1Xi,1 + b2Xi,2 + b3Xi,3 + b4Xi,4 + . . .+ bpXi,p + εi

Hypothesis Formulation
• Null Hypothesis H0: b1 = b2 = b3 = 0

• Alternative Hypothesis H1: At least one bj ̸= 0 for j ∈ {1, 2, 3}

Model Comparison Approach:
• Alternative Model (Full Model):

Yi = b̃0 + b̃1xi,1 + b̃2xi,2 + b̃3xi,3 + b̃4xi,4 + . . .+ b̃pxi,p + εi

• Null Model (Restricted Model):

Yi = b̂0 + 0 · xi,1 + 0 · xi,2 + 0 · xi,3 + b̂4xi,4 + . . .+ b̂pxi,p + εi

F-statistic:

F =
[RSS(Null)− RSS(Alt)]/(palt − pnull)

RSS(Alt)/(n − palt − 1)
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Multiple Hypothesis Testing: Motivation and Challenges

What are Multiple Hypothesis Tests?
• Scenarios involving simultaneous testing of numerous hypotheses
• Prevalent in fields with large-scale data exploration

Even when the Type I error is controlled for each specific test, false positives may
happen frequently when testing many hypotheses
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Multiple testing

• Instead of controlling Type I error for each individual test, we might try to
control the Family-wise error rate

• Family-wise error rate: What is the probability that at least 1 false positive
occurs?

P(at least one false positive) ≤ α
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Bonferroni Procedure: A Conservative Approach

Basic Principle

When conducting m simultaneous hypothesis tests, adjust the significance level to:

New Significance Level =
α

m

Practical Example:
• Original significance level: α = 0.05
• Number of simultaneous tests: m = 1000
• Bonferroni-corrected significance level: 0.05/1000 = 0.00005

Equivalent P-value Adjustment:
• Original p-value: pi
• Adjusted p-value: p̃i = m × pi
• Reject null hypothesis if p̃i < α

Key Characteristics:
• Extremely conservative method
• Guarantees control of Family-Wise Error Rate (FWER)
• Dramatically reduces the chance of Type I errors
• Comes at the cost of statistical power
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Holm Procedure: Controlling Family-Wise Error Rate
(FWER)

Purpose: Control the probability of making at least one Type I error when
performing multiple hypothesis tests

Procedure Steps

Given m total hypotheses and significance level α:

1 Sort p-values from smallest to largest: p(1) ≤ p(2) ≤ . . . ≤ p(m)

2 Sequentially test hypotheses using adjusted significance levels:
• First test: p(1) <

α
m

• Second test: p(2) <
α

m−1
• j-th test: p(j) <

α
m−j+1
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FWER: Balancing Type I Error Control and Statistical
Power

Key Considerations
• Strict Criterion: Minimizing the probability of at least one Type I error

• Trade-off: Stringent control comes at the cost of reduced statistical power

Advantages of FWER Control

• Prevents false discoveries

• Provides strong Type I error
protection

Limitations

• Overly conservative

• Reduces ability to detect true effects

Comparative Methods:

• Holm procedure offers more power than Bonferroni

• Suggests a potential compromise between error control and statistical power

Emerging Question: Can we develop methods that allow more Type I errors
while maintaining reasonable control?
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False Discovery Rate: Quantifying Multiple Testing Errors

Contingency Table of Hypothesis Testing

Rejected Not Rejected Total

Null True A B A + B

Null False C D C + D

Total A + C B + D m

Error Metrics

• False Positive Rate:

A

A+ B

Proportion of true nulls
incorrectly rejected

• False Discovery Rate:

A

A+ C

Proportion of rejected
hypotheses that are false

Goal: Control the expected proportion of false discoveries

E

(
A

A+ C

)
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Benjamini-Hochberg Procedure: Controlling False
Discovery Rate

Setup: Testing m hypotheses with significance level α

Procedure Steps
1 Sort p-values from smallest to largest: p(1) ≤ p(2) ≤ . . . ≤ p(m)

2 Sequentially test hypotheses:
• Reject if p(j) ≤ j

m
α

• Stop when p(j) >
j
m
α

Alternative Formulation:

• Adjusted p-values: p̃(j) = p(j)(m/j)

• Reject for j = 1, 2, . . . , J where J is the largest index with p̃(j) < α

Key Assumption:

• Assumes independence between hypothesis tests

• Works best when tests are not strongly correlated
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Benjamini-Yekutieli Procedure: Robust FDR Control

Purpose: Control False Discovery Rate without assuming test independence

Procedure Details
• Sort p-values from smallest to largest: p(1) ≤ p(2) ≤ . . . ≤ p(m)

• Rejection criterion:

p(j) ≤
j

m
∑m

i=1 i
−1

α

• Continue until first p(j) fails this condition

Key Characteristics:

• Works with dependent and independent hypothesis tests

• More conservative than Benjamini-Hochberg procedure

• Accounts for potential correlations between tests

Computational Insight:

• Introduces a correction factor
∑m

i=1 i
−1

• Provides more robust error rate control across various testing scenarios
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Summary

• Controlling the Type I error can come at the cost of lower power

• When testing many hypothesis, the number of false positives can grow

• Controlling family wise error rate ensures no false positives with high
probability, but increases Type II error

• Controlling False Discovery Rate allow some (but not too many) false
positives and does not lose as much power
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