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Module 4: part 1

Spring 2025

[m]

Module 4: part 1



Logistics

® Starting Module 4: What to do when our assumptions are violated

® Module 3 assessment posted, due Mar 16
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Model Assumption Violations
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Hypothesis Testing & Model Assumptions

Key Points

Statistical inference relies on distributional assumptions.

Hypothesis tests compare test statistics to theoretical null distributions.

These null distributions are derived from model assumptions.

® When assumptions fail, our statistical conclusions may be invalid.
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Common Model Violations

Consequences: Solutions:
® Incorrect p-values and confidence ® Robust standard errors.
intervals. ® Transformation of variables.
® Inflated Type | error rates (false e Alternative testing procedures.
positives).

® Resampling methods (bootstrap).
® Reduced statistical power.

® Biased parameter estimates.

Today’s focus: Dealing with heteroskedasticity
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Linear Model Framework

p
Yi=Bo+ > BiXij+ei

Jj=1

Core Assumptions
® Linearity: E(Y; | Xi =x) =0+ >_; 5%
¢ Independence: ¢; 1l ¢; for i # j
* Homoskedasticity: Var(e; | X;) = 02 (constant variance)
® Exogeneity: E(e; | X;) = 0 (errors independent of predictors)

(1)
()

Distributional Assumption (for exact tests)
® Normality: ¢; ~ N(0,0?)
® Less critical with large sample sizes (Central Limit Theorem)
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Understanding Heteroskedasticity
Homoskedastic Heteroskedastic
Var(e; | X;) = o2 Var(e; | Xi) = o?
(Constant error variance) (Error variance depends on X)

Homoscedasticity Heteroscedasticity

Standardized Residuals
0
Standardized Residuals
0
]

.
o
P .
o
"
£

Standardized Predicted Values Standardized Predicted Values

Common Patterns
® Fan-shaped residuals (variance increases with mean)
® Grouped heteroskedasticity (different groups have different variances)

® Temporal heteroskedasticity (variance changes over time)
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Consequences of Heteroskedasticity

Impact on Statistical Inference

OLS estimators remain unbiased and consistent.

Standard errors become biased (typically underestimated).

® Hypothesis tests no longer valid (incorrect Type | error rates).

Confidence intervals have incorrect coverage probabilities.

OLS no longer the most efficient estimator (BLUE property violated).

Key Insight

When heteroskedasticity is present, the sampling distribution of test statistics
differs from what standard theory predicts, invalidating traditional inference.
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Detecting Heteroskedasticity

Visual Methods: Formal Tests:
® Residual plots (vs. fitted values). ® Breusch-Pagan test
® Residual plots (vs. predictors). ® White test
® Scale-location plots. e Goldfeld-Quandt test
® Q-Q plots of squared residuals. ® NCV test (non-constant variance)

Breusch-Pagan Test (focus of today)

Tests whether estimated variance of residuals depends on the values of
independent variables

@ Regress Y on X to obtain residuals &;

© Regress £2 on X variables

© Test if any coefficients in second regression are significant
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Breusch-Pagan Test

Main ldea

We can test for whether the data is heteroskedastic using the Breusch—Pagan test.
Objective: Test if the variability of the residuals is associated with the covariates.

@ Fit model and get residuals &; = y; — y;
@ Let u; be a standardized version of é2 so that u; has mean =1

IZQ Zu,fl

© Fit an auxiliary regression model:

u; =

P
Ui =30+ Y AkXik
k=1
Intuition

If covariates can predict the squared residuals, then error variance depends on X
values (heteroskedasticity).

Soring 3035 e



Breusch-Pagan Test

Hypothesis Testing Framework

Under the null hypothesis that the data generating process is homoskedastic:

Ho:m=vwm=...=9%=0 (3)
Hp : at least one coefficient is non-zero (4)
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Breusch-Pagan Test
Hypothesis Testing Framework
Under the null hypothesis that the data generating process is homoskedastic:

H:m=m=...=7%=0
H, : at least one coefficient is non-zero

Test Statistic
Calculate test statistic:

L= = (RSSy — RSS(%))

N —

where RSSy = Y",(uj —1)2 and  RSS(3) = 33, (i — 30 — 3Py Awxik)
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Breusch-Pagan Test
Hypothesis Testing Framework
Under the null hypothesis that the data generating process is homoskedastic:

H:m=m=...=7%=0 (3)
Hp : at least one coefficient is non-zero (4)

Test Statistic
Calculate test statistic:
[ =

N —

(RSSo — RSS(%))

where RSSy = Y",(uj —1)2 and  RSS(3) = 33, (i — 30 — 3Py Awxik)

Statistical Decision

Under Hy, L ~ x? (chi-squared with p degrees of freedom).
Reject Hp if L > X3, at significance level c.
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Breusch Pagan Test

o o o
[~
(]
8 - 0 -
o | —
- ]
E]
B =
g °
o
=g
D _—
j
o
o
R ] ]
T T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4
X X

Spring 2025 12 /22



Breusch Pagan Test
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Breusch Pagan Test

o
=
o -
=]
uwy
2 -
o
= =
S o 7
= =
&
e 2
v
[
e o
; - 1
o
o a
gl_o ?— =]
T T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4
X X

Soring 3035 e



Breusch Pagan Test
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Addressing Heteroskedasticity

Transformation Approaches: Robust Inference:
® Log transformation: log(Y;) ® Heteroskedasticity-Consistent (HC)
® Power transformations: Y estimators
o Box-Cox transformations ® Weighted Least Squares (WLS).

® Variance-stabilizing transformations

—

Sandwich Estimator (First HC estimator)
Var(3) = (X'X) 1 X diag(£2) X (X'X) J
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Sandwich Estimator for Heteroskedasticity

General Variance Formula for OLS Estimators
Under heteroskedasticity, the true variance of the OLS estimators is:

Var(B | X) = o2(X'X) " 1(X'WX)(X'X)"?

® W is a diagonal matrix with w; = Var(e;)/o?.
® When homoskedastic, W = I and formula simplifies to o?(X'X) L.

® When heteroskedastic, diagonal elements of W differ, preventing
simplification.
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Sandwich Estimator for Heteroskedasticity

General Variance Formula for OLS Estimators
Under heteroskedasticity, the true variance of the OLS estimators is:

Var(B | X) = o2(X'X) " 1(X'WX)(X'X)"?

® W is a diagonal matrix with w; = Var(e;)/o?.
® When homoskedastic, W = I and formula simplifies to o?(X'X) L.

® When heteroskedastic, diagonal elements of W differ, preventing
simplification.

Sandwich Estimator (White, 1980)

When we substitute estimates for o> and W, we get the "sandwich” estimator:

—

Var(B | X) = 62(X'X) "L (X'WX)(X'X)
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Robust Inference with Sandwich Estimator

Estimated Variance Matrix
With the sandwich estimator:

Var(B | X) = 62(X'X) " (X'WX)(X'X)

Hypothesis Testing Confidence Intervals
o A —
b BB (5 BiEtiapepaVNVar(BIX); (6)
[Var(3 | X)];

® Use same formula as standard Cl.

O . .
® f3j is the hypothesized value. ® Only the variance estimate changes.

e []; indicates the j-th diagonal
element.
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Robust Inference with Sandwich Estimator

Estimated Variance Matrix
With the sandwich estimator:

o —

Var(3 | X) = 62(X'X)"L(X'WX)(X'X)"?

Hypothesis Testing Confidence Intervals
5 a0 A —
o B0 (5 Bittiape eV NVar(BIX)); (6)
[Var(3 | X)];

® Use same formula as standard Cl.

O . .
® f3j is the hypothesized value. ® Only the variance estimate changes.

® []; indicates the j-th diagonal
element.

Large Sample Properties

As n (the sample size) increases, the hypothesis tests and confidence intervals
become valid regardless of whether the data is homoskedastic or heteroskedastic.
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Simulation Study: Comparing Methods
Data Generating Process

For fixed covariates X = (X1, Xz, ..., X,):

Yi=Bo+ BiXi +ei
Model 2 (Heteroskedastic):
i | Xi ~ N(0, (X; +1)/3)

Model 1 (Homoskedastic):
ei | Xi ~ N(0,(x +1)/3)
Simulation Design (TO DO)

® Compare standard OLS inference vs. sandwich estimator inference.
® Sample sizes: n = 25,50, 100, 200, 400.

® Measure Type | error: when ; = 1 and testing Hp : 81 = 1.

® Measure Type Il error: when 8; = 1.1 and testing Hy : 51 = 1.

Key Questions (TO ANSWER)

® Does the S.E. maintain correct Type | error rates under heteroskedasticity?
® How much power is lost when using the S.E. under homoskedasticity?
® At what sample size does the S.E. perform adequately?
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Heteroskedasticity-Consistent (HC) Standard Errors

HC Variants
® HCO: Original White estimator (£2).

ngké\?)

® HC1: Small sample correction (
® HC2: Leverage adjustment (f—zh”)
® HC3: Jackknife-inspired (%;)

where h;; are the diagonal elements of the hat matrix H = X(X’X)~1X".
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Weighted Least Squares (WLS)

Approach

If we know the structure of heteroskedasticity' Var(a-) =o’w;
© Transform the model: \ﬁ W +> @ W
@ Apply OLS to transformed model.

© Result: efficient estimates with correct standard errors.

Challenge

The true weights w; are typically unknown and must be estimated.

Common Weight Functions
® w; = |X;| (variance proportional to predictor).
* w; = Y; (variance proportional to mean).

° W = \7,2 (standard deviation proportional to mean).
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Practical Recommendations

When to worry:

® Small samples with clear
heteroskedasticity.

® Inference is primary goal (p-values,

Cls).
Prediction intervals needed.

e Efficiency of estimates matters.

® Financial or economic data.

Summary

Best practices:

Always check for heteroskedasticity

Use HC standard errors as default
approach.

Consider transformations for severe
cases.

Report results with and without
corrections.

Use bootstrap for complex
situations.

® Heteroskedasticity affects inference but not point estimates.

® HC standard errors provide simple, robust solution in most cases.

® Transformations can address both heteroskedasticity and non-linearity.

® \WLS is most efficient when variance structure is known.
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