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Why Bootstrap? A Nutritional Science Perspective

The Challenge in Nutritional Research:

• You are studying the relationship between dietary polyphenol intake and
inflammation markers.

• Small sample size: Only 28 participants.
• Highly variable responses between individuals.
• Non-normal distribution of inflammation markers (right-skewed).
• Presence of influential observations.

Traditional Approaches Fall Short:
• Parametric tests require normality assumptions.
• Transformations distort interpretability.
• Small sample prevents reliable asymptotic approximations.
• Impossible to collect more data (budget constraints).

Sampling Distribution?

How to estimate confidence intervals for the effect size when assumptions are
violated?

Module 4: part 2 BTRY 6020 Spring 2025 3 / 25



Model Assumption Violations
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Model-Based Hypothesis Testing

• Hypothesis testing compares our test statistic to a
hypothetical sampling distribution.

• Sampling Distribution: Distribution of the test
statistic if we repeated data collection infinitely.

• Model-based approach: Data generating
assumptions determine the theoretical sampling
distribution.

• Robust approaches: Methods that work even when
assumptions are violated.

t

f (t)

tobs

Sampling distribution

Key Challenge

What happens when our model assumptions are violated?

• Sandwich Estimator: Robust standard error estimation that allows for
heteroskedasticity.

• Also known as Huber-White or heteroskedasticity-consistent (HC)
standard errors.
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Monte Carlo Methods: Introduction

• Computational technique to study properties of random processes
• Historical Context:

• Developed during Manhattan Project (1940s)
• Named after Monaco’s Monte Carlo casino district
• Pioneered by Stanislaw Ulam and John von Neumann

• Used to calculate statistical properties: mean, variance, quantiles, distribution
shapes

Basic Strategy

1 Simulate data generation process many times.

2 Calculate desired statistics from samples.

3 Increase simulation count for higher precision.

Example: Blackjack Strategy

Simulate thousands of blackjack games → Calculate win percentage → Estimate
long-term success rate.
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Monte Carlo Methods: Applications in Statistical Inference

Advantages:

• Verifies theoretical properties

• Handles complex models

• Provides visual understanding

• Tests robustness to violations

Limitations:

• Requires known data generation
process

• Dependent on strong assumptions

• Computationally intensive

• May not reflect real-world
complexity

Key Questions
• Can we ”approximately” draw new data without exact models?

• Can we relax assumptions while maintaining validity?

Bridge to Bootstrapping

This leads us to resampling methods like bootstrapping, which use observed data
to approximate sampling distributions without strong parametric assumptions.
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Bootstrap
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Bootstrap Procedures: Approximating Sampling
Distributions

Definition: Bootstrap methods approximate the sampling distribution of a
statistic by resampling from observed data.

• Requires weaker assumptions than parametric methods

• Particularly valuable for small sample sizes

• Handles non-standard statistics where theoretical distributions are unknown

• Provides empirical confidence intervals without normality assumptions

Key Insight

Bootstrap treats the sample as a ”mini-population” that approximates the true
population.
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Bootstrap plot

Original Sample

Sample 1 Sample 2 Sample M

Empirical Distribution

· · ·
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Empirical Bootstrap: Step-by-Step Implementation

Given: Data pairs (Xi ,Yi ) for
i = 1, . . . , n

1 Calculate statistic θ̂ from original
data

2 Resample n observations with
replacement from original data →
create D(m)

3 Calculate θ̂(m) from bootstrapped
dataset D(m)

4 Repeat steps 2-3 for m = 1, . . . ,M
(typically M ≥ 1000)

Original Data
(X1,Y1), (X2,Y2), ..., (Xn,Yn)

D(1) D(M)

θ̂(1) θ̂(M)

Bootstrap Distribution of θ̂

· · ·

· · ·

Why It Works

Sampling with replacement mimics the original data generating process,
approximating the true sampling distribution.
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Empirical/Case/Pairs Bootstrap
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Empirical/Case/Pairs Bootstrap
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Empirical/Case/Pairs Bootstrap
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Wild Bootstrap: Handling Heteroskedasticity
1 Calculate statistic d from observed data
2 Fit regression model: ŷi = b̂0 +

∑
k b̂kxi,k

3 Compute residuals: ε̂i = yi − ŷi
4 Create bootstrap samples D(m) with:

y
(m)
i = b̂0 +

∑
k

b̂kxi,k + ε̂i × Zi

where Zi ∼ N(0, 1) or alternative distribution
5 Calculate test statistic d (m) from each bootstrap sample
6 Repeat steps 4-5 for m = 1, . . . ,M samples

Why It Works

Using fitted values maintains the regression structure, while multiplying
residuals by random noise preserves the heteroskedastic error pattern at
each point.

Key Advantage

Preserves heteroskedasticity pattern in the original data!
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Bootstrap Methods: Practical Concerns
Sample Size and
Computation

• M should be large
(≥ 1000).

• Larger M reduces MC error.

• Parallel computing can help.
Design Considerations

• For fixed X , empirical
bootstrap performs poorly.

• With outliers, use robust
bootstrap variants.

Method Selection Guidelines

Issue Recommended Method
Heteroskedasticity Wild bootstrap
Fixed X Wild bootstrap
Non-linear relationship Model-based bootstrap
Time series Block bootstrap
Outliers Robust bootstrap
Clustered data Cluster bootstrap

Diagnostics

• Check bootstrap distribution shape.

• Compare different bootstrap methods.

• Assess sensitivity to M.

Limitations of Wild Bootstrap
• Assumes correct model specification

• May not work well with highly asymmetric error distributions

• Performance depends on multiplier distribution choice

• Less effective for very small samples (n < 20)
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Practical Concerns
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Practical Concerns
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Bootstrap Variance Estimation & Inference
Given M bootstrap samples with test
statistics {d (1), d (2), . . . , d (M)}:

1 Calculate bootstrap mean:

d̄⋆ =
1

M

M∑
m=1

d (m)

2 Estimate variance:

V̂ar(d̂) =
1

M

M∑
m=1

(d (m) − d̄⋆)2

3 Construct confidence interval:

b̂1 ± tn−p−1,1−α/2

√
V̂ar(b̂1)

4 Test hypothesis H0 : b1 = β:

t =
b̂1 − β√
V̂ar(b̂1)

Compare to tn−p−1 distribution for
p-value.

Alternative: Percentile
Method

Directly use empirical quantiles
of bootstrap distribution:

CI1−α =
[
d (⌊α/2·M⌋), d (⌈(1−α/2)·M⌉)

]
where d (k) is the k-th ordered
bootstrap statistic
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Bootstrap Variance Estimation & Inference

Important Considerations
• For skewed distributions, percentile method may be preferred.

• For highly non-normal statistics, transformations before bootstrap may
improve performance.

• Bootstrap variance estimate converges to true variance as M → ∞ and
n → ∞.
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Percentile CI

Alternatively, we can use a “percentile approach” to form a 1− α confidence
interval

1 Calculate the statistic d̂ from the observed data

2 Let δ(m) = d (m) − d̂

3 Let δα/2 be the α/2 quantile of δ(m) for m = 1, . . .M

4 Let δ1−α/2 be the 1− α/2 quantile of δ(m) for m = 1, . . .M

5 Construct the confidence interval as

(d̂ − δ1−α/2, d̂ − δα/2)
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Non-standard quantities

The bootstrap also allows us to compute confidence intervals for “non-standard”
quantities

• Bootstrap can be used for a wide variety of statistics (i.e., d and d (m) can be
many different quantities of interest)

• If you can compute the quantity of interest from data, the bootstrap
distribution (can in most cases) be used to approximate the sampling
distribution

Example:

• Suppose I’m interested in the quantity b1/b2
• The sampling distribution of b̂1/b̂2 is hard to describe theoretically

• Use bootstrap to approximate sampling distribution of b̂1/b̂2
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Simulation study

Yi = b1Xi,1 + b2Xi,2 + εi

(Xi,1,Xi,2) ∼ Correlated Gamma εi | Xi = N(0, x2i,1)

• Create a 95% confidence interval for b1 using
• model based standard errors
• wild bootstrap (percentile method)
• empirical bootstrap (percentile method)
• empirical bootstrap (Bootstrapped variance estimate)

• Create a 95% confidence interval for b1/b2 using empirical bootstrap
(percentile)
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Simulation study

Since this is a simulation and we know the truth, we can measure the proportion
of times the 95% confidence interval actually covers the parameter of interest

n MB WB (P) EB (P) EB (V) b1/b2
50 0.63 0.81 0.89 0.87 0.91
100 0.58 0.86 0.90 0.90 0.91
250 0.58 0.91 0.93 0.92 0.92
500 0.57 0.93 0.93 0.94 0.93
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Bootstrap

• Bootstrap is a powerful concept which allows us to approximate the sampling
distribution

• Can be used under weaker assumptions

• Lots of research on how to improve bootstrap and adapt to different settings

• Can be used for non-standard quantities
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