Lecture 14: Bootstrap Methods

Module 4: part 2

Spring 2025

Logistics

• Module 3 Assessment due Mar 16

Why Bootstrap? A Nutritional Science Perspective

The Challenge in Nutritional Research:

- You are studying the relationship between dietary polyphenol intake and inflammation markers.
- Small sample size: Only 28 participants.
- Highly variable responses between individuals.
- Non-normal distribution of inflammation markers (right-skewed).
- Presence of influential observations.

Traditional Approaches Fall Short:

- Parametric tests require normality assumptions.
- Transformations distort interpretability.
- Small sample prevents reliable asymptotic approximations.
- Impossible to collect more data (budget constraints).



Model Assumption Violations

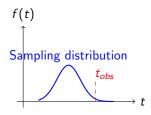
Model-Based Hypothesis Testing

- Hypothesis testing compares our test statistic to a **hypothetical sampling distribution**.
- **Sampling Distribution:** Distribution of the test statistic if we repeated data collection infinitely.
- **Model-based approach:** Data generating assumptions determine the theoretical sampling distribution.
- **Robust approaches:** Methods that work even when assumptions are violated.

Key Challenge

What happens when our model assumptions are violated?

- **Sandwich Estimator:** Robust standard error estimation that allows for heteroskedasticity.
- Also known as **Huber-White** or **heteroskedasticity-consistent (HC)** standard errors.



Monte Carlo Methods: Introduction

- · Computational technique to study properties of random processes
- Historical Context:
 - Developed during Manhattan Project (1940s)
 - Named after Monaco's Monte Carlo casino district
 - Pioneered by Stanislaw Ulam and John von Neumann
- Used to calculate statistical properties: mean, variance, quantiles, distribution shapes

Basic Strategy

- Simulate data generation process many times.
- ② Calculate desired statistics from samples.
- Increase simulation count for higher precision.

Example: Blackjack Strategy

Simulate thousands of blackjack games \rightarrow Calculate win percentage \rightarrow Estimate long-term success rate.

Monte Carlo Methods: Applications in Statistical Inference

Advantages:

- Verifies theoretical properties
- Handles complex models
- Provides visual understanding
- Tests robustness to violations

Limitations:

- Requires known data generation process
- Dependent on strong assumptions
- Computationally intensive
- May not reflect real-world complexity

Key Questions

- Can we "approximately" draw new data without exact models?
- Can we relax assumptions while maintaining validity?

Bridge to Bootstrapping

This leads us to resampling methods like bootstrapping, which use observed data to approximate sampling distributions without strong parametric assumptions.

Bootstrap

Bootstrap Procedures: Approximating Sampling Distributions

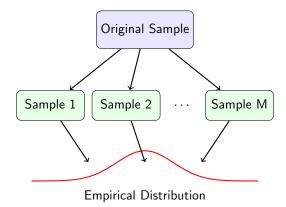
Definition: Bootstrap methods approximate the sampling distribution of a statistic by resampling from observed data.

- Requires weaker assumptions than parametric methods
- Particularly valuable for small sample sizes
- Handles non-standard statistics where theoretical distributions are unknown
- Provides empirical confidence intervals without normality assumptions

Key Insight

Bootstrap treats the sample as a "mini-population" that approximates the true population.

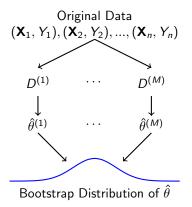
Bootstrap plot



Empirical Bootstrap: Step-by-Step Implementation

Given: Data pairs (\mathbf{X}_i, Y_i) for $i = 1, \ldots, n$

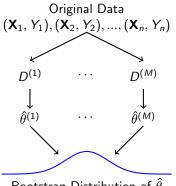
- Calculate statistic $\hat{\theta}$ from original data
- Sesample *n* observations with replacement from original data \rightarrow create $D^{(m)}$
- Calculate $\hat{\theta}^{(m)}$ from bootstrapped dataset $D^{(m)}$
- Repeat steps 2-3 for *m* = 1,..., *M* (typically *M* ≥ 1000)



Empirical Bootstrap: Step-by-Step Implementation

Given: Data pairs (\mathbf{X}_i, Y_i) for $i = 1, \ldots, n$

- Calculate statistic $\hat{\theta}$ from original data
- Sesample *n* observations with replacement from original data \rightarrow create $D^{(m)}$
- Calculate $\hat{\theta}^{(m)}$ from bootstrapped dataset $D^{(m)}$
- Repeat steps 2-3 for *m* = 1,..., *M* (typically *M* ≥ 1000)



Bootstrap Distribution of $\hat{\theta}$

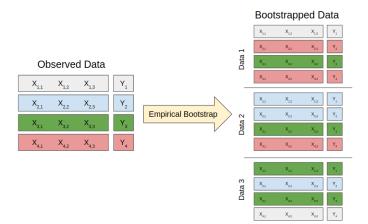
Why It Works

Sampling with replacement mimics the original data generating process, approximating the true sampling distribution.

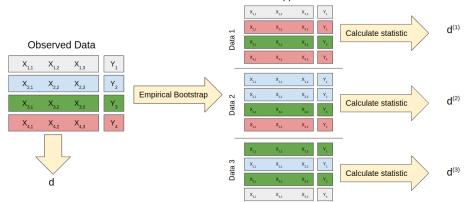
Empirical/Case/Pairs Bootstrap

Observed Data

Empirical/Case/Pairs Bootstrap



Empirical/Case/Pairs Bootstrap



Bootstrapped Data

Wild Bootstrap: Handling Heteroskedasticity

- Calculate statistic d from observed data
- Solution Fit regression model: $\hat{y}_i = \hat{b}_0 + \sum_k \hat{b}_k x_{i,k}$
- **③** Compute residuals: $\hat{\varepsilon}_i = y_i \hat{y}_i$
- Create bootstrap samples $D^{(m)}$ with:

$$y_i^{(m)} = \hat{b}_0 + \sum_k \hat{b}_k x_{i,k} + \hat{\varepsilon}_i \times Z_i$$

where $Z_i \sim N(0, 1)$ or alternative distribution

- **③** Calculate test statistic $d^{(m)}$ from each bootstrap sample
- Repeat steps 4-5 for $m = 1, \ldots, M$ samples

Why It Works

Using fitted values maintains the regression structure, while multiplying residuals by random noise preserves the heteroskedastic error pattern at each point.

Wild Bootstrap: Handling Heteroskedasticity

- Calculate statistic d from observed data
- Solution Fit regression model: $\hat{y}_i = \hat{b}_0 + \sum_k \hat{b}_k x_{i,k}$
- Compute residuals: $\hat{\varepsilon}_i = y_i \hat{y}_i$
- Create bootstrap samples $D^{(m)}$ with:

$$y_i^{(m)} = \hat{b}_0 + \sum_k \hat{b}_k x_{i,k} + \hat{\varepsilon}_i \times Z_i$$

where $Z_i \sim N(0, 1)$ or alternative distribution

- **③** Calculate test statistic $d^{(m)}$ from each bootstrap sample
- Solution Repeat steps 4-5 for $m = 1, \ldots, M$ samples

Why It Works

Using fitted values maintains the regression structure, while multiplying residuals by random noise preserves the heteroskedastic error pattern at each point.

Key Advantage

Preserves heteroskedasticity pattern in the original data!

Mod	ule	part	2

Bootstrap Methods: Practical Concerns

Sample Size and Computation

- M should be large (≥ 1000).
- Larger *M* reduces MC error.
- Parallel computing can help. **Design Considerations**
 - For fixed *X*, empirical bootstrap performs poorly.
 - With outliers, use robust bootstrap variants.

Limitations of Wild Bootstrap

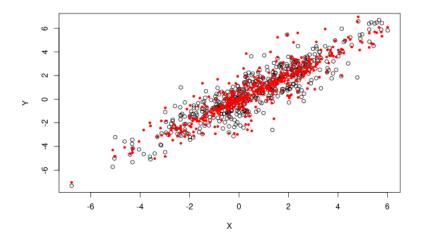
- Assumes correct model specification
- May not work well with highly asymmetric error distributions
- Performance depends on multiplier distribution choice
- Less effective for very small samples (n < 20)

Issue	Recommended Method		
Heteroskedasticity	Wild bootstrap		
Fixed X	Wild bootstrap		
Non-linear relationship	Model-based bootstrap		
Time series	Block bootstrap		
Outliers	Robust bootstrap		
Clustered data	Cluster bootstrap		

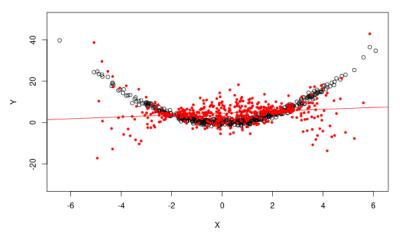
Diagnostics

- Check bootstrap distribution shape.
- Compare different bootstrap methods.
- Assess sensitivity to *M*.

Practical Concerns



Practical Concerns



Bootstrap Variance Estimation & Inference

Given *M* bootstrap samples with test statistics $\{d^{(1)}, d^{(2)}, \ldots, d^{(M)}\}$:

Calculate bootstrap mean:

$$ar{d}^{\star} = rac{1}{M}\sum_{m=1}^M d^{(m)}$$

Stimate variance:

$$\widehat{\mathsf{Var}}(\hat{d}) = rac{1}{M}\sum_{m=1}^{M}(d^{(m)}-ar{d}^{\star})^2$$

Onstruct confidence interval:

$$\hat{b}_1 \pm t_{n-p-1,1-lpha/2} \sqrt{\operatorname{Var}(\hat{b}_1)}$$

• Test hypothesis
$$H_0: b_1 = \beta$$
:
 $t = \frac{\hat{b}_1 - \beta}{\sqrt{\widehat{Var}(\hat{b}_1)}}$

Compare to t_{n-p-1} distribution for p-value.

Alternative:PercentileMethodDirectly use empirical quantiles
of bootstrap distribution: $Cl_{1-\alpha} = \left[d^{(\lfloor \alpha/2 \cdot M \rfloor)}, d^{(\lceil (1-\alpha/2) \cdot M \rceil)} \right]$

where $d^{(k)}$ is the *k*-th ordered bootstrap statistic

Bootstrap Variance Estimation & Inference

Important Considerations

- For skewed distributions, percentile method may be preferred.
- For highly non-normal statistics, transformations before bootstrap may improve performance.
- Bootstrap variance estimate converges to true variance as $M \to \infty$ and $n \to \infty$.

Percentile CI

Alternatively, we can use a "percentile approach" to form a $1-\alpha$ confidence interval

- Calculate the statistic \hat{d} from the observed data
- (2) Let $\delta^{(m)} = d^{(m)} \hat{d}$
- Solution Let $\delta_{\alpha/2}$ be the $\alpha/2$ quantile of $\delta^{(m)}$ for $m = 1, \dots M$
- Solution Let $\delta_{1-\alpha/2}$ be the $1-\alpha/2$ quantile of $\delta^{(m)}$ for $m=1,\ldots M$
- Onstruct the confidence interval as

$$(\hat{d} - \delta_{1-\alpha/2}, \hat{d} - \delta_{\alpha/2})$$

Non-standard quantities

The bootstrap also allows us to compute confidence intervals for "non-standard" quantities

- Bootstrap can be used for a wide variety of statistics (i.e., d and d^(m) can be many different quantities of interest)
- If you can compute the quantity of interest from data, the bootstrap distribution (can in most cases) be used to approximate the sampling distribution

Non-standard quantities

The bootstrap also allows us to compute confidence intervals for "non-standard" quantities

- Bootstrap can be used for a wide variety of statistics (i.e., d and d^(m) can be many different quantities of interest)
- If you can compute the quantity of interest from data, the bootstrap distribution (can in most cases) be used to approximate the sampling distribution

Example:

- Suppose I'm interested in the quantity b_1/b_2
- The sampling distribution of \hat{b}_1/\hat{b}_2 is hard to describe theoretically
- Use bootstrap to approximate sampling distribution of \hat{b}_1/\hat{b}_2

Simulation study

$$Y_i = b_1 X_{i,1} + b_2 X_{i,2} + arepsilon_i$$

 $(X_{i,1}, X_{i,2}) \sim ext{Correlated Gamma}$ $arepsilon_i \mid X_i = N(0, x_{i,1}^2)$

- Create a 95% confidence interval for b₁ using
 - model based standard errors
 - wild bootstrap (percentile method)
 - empirical bootstrap (percentile method)
 - empirical bootstrap (Bootstrapped variance estimate)

14

• Create a 95% confidence interval for b_1/b_2 using empirical bootstrap (percentile)

Simulation study

Since this is a simulation and we know the truth, we can measure the proportion of times the 95% confidence interval actually covers the parameter of interest

n	MB	WB (P)	EB (P)	EB (V)	b_1/b_2
50	0.63	0.81	0.89	0.87	0.91
100	0.58	0.86	0.90	0.90	0.91
250	0.58	0.91	0.93	0.92	0.92
500	0.57	0.93	0.93	0.94	0.93

Bootstrap

- Bootstrap is a powerful concept which allows us to approximate the sampling distribution
- Can be used under weaker assumptions
- Lots of research on how to improve bootstrap and adapt to different settings
- Can be used for non-standard quantities