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Logistics

• Module 4 assessment posted, due March 23rd 11:59

• Starting Module 5 on Model Selection

• How to assess model’s predictive ability
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Model Selection
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Regression Analysis: Two Fundamental Purposes

1. Describe Scientific Processes

• Uncover relationships between
variables

• Identify potential causal
mechanisms

• Test specific hypotheses

• Focus: Understanding

2. Build Predictive Models

• Forecast future outcomes

• Identify associations without
causation

• Optimize predictive accuracy

• Focus: Performance
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Why Do We Fit Regressions?

Scientific Understanding
• Describe underlying mechanisms

• Example: What factors drive a company’s share price changes?
• Which variables, if manipulated, would change share price?
• Requires careful consideration of causal assumptions

Prediction
• Create models that forecast outcomes

• Example: Will this specific company’s share price rise?
• No explicit causal model required
• Identifies associations that improve prediction accuracy
• Can be developed purely from observed data patterns

Module 5: part 1 BTRY 6020 Spring 2025 5 / 26



Why Do We Fit Regressions?

Scientific Understanding
• Describe underlying mechanisms

• Example: What factors drive a company’s share price changes?
• Which variables, if manipulated, would change share price?
• Requires careful consideration of causal assumptions

Prediction
• Create models that forecast outcomes

• Example: Will this specific company’s share price rise?
• No explicit causal model required
• Identifies associations that improve prediction accuracy
• Can be developed purely from observed data patterns

Module 5: part 1 BTRY 6020 Spring 2025 5 / 26



Regression for Scientific Understanding

When using regression to describe underlying processes:

• We assume data generation follows our specified model

• We aim to estimate specific model parameters

• Useful approximation even when reality is more complex

• Causal interpretations require strong assumptions:
• No unmeasured confounders
• Correct functional form
• Proper temporal ordering

Model Selection for Scientific Understanding:

• Helps identify parsimonious explanatory models

• F-tests can compare nested models for specific hypotheses

• Information criteria (AIC, BIC) help approximate ”true model”
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Regression for Prediction

Core Principles:

• Focus on predicting new data, not fitting existing data

• No assumption of causality required

• Goal: minimize prediction error on unseen observations

• Trade-off: model complexity vs. generalizability

Model Selection for Prediction:

• RSS alone is insufficient: RSS =
∑

i (yi − ŷi )
2

• Complex models always reduce RSS but may overfit

• Better approaches:
• Cross-validation (train/test splits)
• Regularization (Ridge, LASSO)
• Information criteria with complexity penalties

• Optimal model complexity depends on sample size and noise
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Bias-Variance Trade-off

• In statistics, the bias-variance trade-off is a fundamental constraint

• Two competing reasons for why our predictive model may not perform well:
• Bias: We don’t include the right covariates in our model, so the model we are

fitting is inherently wrong (but may still be useful)
• Variance: The model we are fitting is very complex relative to the amount of

data we have, so our estimated parameters are not very precise

Expected Prediction Error:

E[(Y − f̂ (X ))2] = Bias2 + Variance + Irreducible Error

As model complexity increases:

• Bias decreases (better fit to training data)

• Variance increases (more sensitive to sampling)

• Total error follows U-shaped curve

• Goal: Find optimal complexity that minimizes total error
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Bias-Variance Trade-off

Bias and variance in making cakes:

Figure: High Bias, Low Variance

Figure: Low Bias, High Variance

• Betty Crocker: Simple recipe, consistent results but not gourmet (high bias,
low variance)

• Home made: Complex recipe, potentially amazing but more variable results
(low bias, high variance)
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Bias-Variance Example

Suppose data are generated by the model for i = 1, . . . , n:

Yi = b0 +
50∑
k=1

bkXi,k + εi

cov(Xi,k ,Xi,l) = 1/5 var(Xi,k) = 1

εi ∼ N(0, 16)

Experiment:

1 For m = 1, 2, . . . 50

2 Fit a model using only the first m predictors (omitting the rest)

3 When m is smaller, the model we fit is “more biased”

4 Using estimated b̂0, b̂1, . . . , b̂m, predict ŷi for new data

5 Measure RSS (yi − ŷi )
2 on observed data

6 Measure prediction error (yi − ŷi )
2 on new data
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Bias-Variance Example Results
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Bias-Variance Example Results
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Models and Parameters

Structural Decisions
Model Selection: Which variables do we include?

• Linear vs. non-linear relationships

• Interaction terms

• Polynomial terms

• Variable transformations

Estimation
Parameter Estimation: What are the coefficients for included variables?

• Ordinary least squares (OLS)

• Maximum likelihood estimation (MLE)

• Regularized approaches (Ridge, LASSO)

• Robust estimators
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Class Discussion

Scientific Understanding:

• What are examples in your work
where you need a causal model?

• What assumptions are critical for
your analysis?

• How do you validate these
assumptions?

Prediction:

• What are examples where you
need predictive models?

• How do you evaluate predictive
performance?

• What techniques do you use to
avoid overfitting?

Your Turn: Identify a research question where the
distinction between causal and predictive modeling would

be crucial.
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Cross-Validation: Assessing Predictive Performance
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The Challenge of Generalization

Key Question in Predictive Modeling:

How well will our model perform on new, unseen data?

• Training error is an overly optimistic measure of predictive performance

• We need methods to estimate generalization error accurately

• Cross-validation provides a principled approach to this problem
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Generalization Error: The Goal of Predictive Modeling

We want to minimize the expected prediction error on new observations:
• Define a loss function L(yi , ŷi ) that quantifies prediction error

• For continuous outcomes: L(yi , ŷi ) = (yi − ŷi )
2 (squared error)

• For categorical outcomes: L(yi , ŷi ) = 1{yi ̸=ŷi} (misclassification)

• Our goal: Minimize E[L(ynew, ŷnew)]

• The fundamental challenge: We don’t have access to the true distribution
of future data

• Solution: Use existing data to simulate the process of predicting new
observations
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Cross-Validation: Core Concept

The Central Idea of Cross-Validation
Repeatedly split data into training and testing sets to estimate how well models
will generalize to new data.

The general procedure:

1 Set aside a portion of your data as a ”test set”

2 Train your model on the remaining data (the ”training set”)

3 Evaluate model performance on the test set

4 Repeat this process with different train/test splits

Key benefit: Every observation serves as both training and test data across
iterations
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Leave-One-Out Cross-Validation (LOOCV)

Procedure:
1 For each observation i in your dataset:

• Train model on all observations except i
• Predict ŷi for the held-out observation
• Calculate error: ei = yi − ŷi

2 The LOOCV estimate of prediction error is:

CV(n) =
1

n

n∑
i=1

L(yi , ŷi ) =
1

n

n∑
i=1

e2i
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Leave-One-Out Cross-Validation: Visualization
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Properties of LOOCV

Advantages:

• Nearly unbiased estimate of
generalization error

• Maximizes the size of the training
set

• Deterministic (no randomness in
the splits)

• Especially useful for small datasets

Disadvantages:

• Computationally expensive (fit
model n times)

• High variance in the estimate

• Test sets consist of single
observations

• Less effective for model selection

• The LOOCV error differs from RSS because each ŷi is computed from a
different model

• For linear regression, there is a computational shortcut:

CV(n) =
1

n

n∑
i=1

(
yi − ŷi
1− hii

)2

where hii is the ith diagonal element of the ”hat matrix”
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Train-Test Split: The Simplest Approach

Procedure:

1 Randomly split data into training set (e.g., 70-80%) and test set (20-30%)

2 Train model using only the training set

3 Evaluate performance on the held-out test set

Advantages:

• Computationally efficient (fit model only once)

• Simple to implement

• Mimics real-world application scenario

Disadvantages:

• Results depend on the specific random split

• Less efficient use of data (some observations never train the model)

• Higher variance in the error estimate
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K-Fold Cross-Validation: The Practical Solution

Procedure:

1 Randomly divide data into K equal-sized folds (typically K = 5 or K = 10)
2 For each fold k = 1, 2, . . . ,K :

• Train model on all folds except fold k
• Evaluate performance on fold k

3 Average the error across all K folds:

CV(K) =
1

K

K∑
k=1

Errork
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K-Fold Cross-Validation: Visualization
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K-Fold Cross-Validation: Visualization
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Comparing Cross-Validation Methods

Method Bias Variance Computation
LOOCV Lowest Highest Most expensive
K-fold CV Low Medium Moderate
Train-Test Split Highest Lowest Least expensive

K-fold CV is often the preferred method:

• Good balance between bias and variance

• More efficient use of data than simple train-test split

• Less computationally intensive than LOOCV

• K = 5 or K = 10 typically works well in practice

• For added stability, repeat K-fold CV multiple times with different random
partitions
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Cross-Validation for Model Selection

Cross-validation provides a principled approach to comparing different models:
1 For each candidate model:

• Perform cross-validation
• Calculate CV error estimate

2 Select model with lowest CV error

3 Refit selected model on full dataset

Important Note

When using CV for both model selection and performance estimation, use nested
cross-validation to avoid selection bias in your final error estimate!
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Putting It All Together: The Model Building Process

1 Define your prediction task and loss function

2 Select candidate models to compare

3 Use cross-validation to estimate generalization error for each model

4 Select the model with the lowest cross-validation error

5 Refit the selected model on the full dataset

6 If desired, evaluate final model on a completely held-out test set

Key Takeaways
• Cross-validation provides an objective way to assess predictive performance

• It helps manage the bias-variance tradeoff in model selection

• Different CV approaches offer tradeoffs between bias, variance, and
computational cost

• The goal is always to find models that generalize well to new, unseen data
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