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Logistics

® Module 4 assessment posted, due March 23rd 11:59
® Starting Module 5 on Model Selection
® How to assess model's predictive ability
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Regression Analysis: Two Fundamental Purposes

1. Describe Scientific Processes 2. Build Predictive Models
® Uncover relationships between ® Forecast future outcomes
variables ® |dentify associations without
® [dentify potential causal causation
mechanisms e Optimize predictive accuracy
® Test specific hypotheses e Focus: Performance

® Focus: Understanding
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Why Do We Fit Regressions?

Scientific Understanding

® Describe underlying mechanisms
® Example: What factors drive a company’s share price changes?
® Which variables, if manipulated, would change share price?
® Requires careful consideration of causal assumptions
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Why Do We Fit Regressions?

Scientific Understanding

® Describe underlying mechanisms
® Example: What factors drive a company’s share price changes?
® Which variables, if manipulated, would change share price?
® Requires careful consideration of causal assumptions

Prediction

® Create models that forecast outcomes
® Example: Will this specific company'’s share price rise?
® No explicit causal model required
® |dentifies associations that improve prediction accuracy
® Can be developed purely from observed data patterns
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Regression for Scientific Understanding

When using regression to describe underlying processes:
® We assume data generation follows our specified model

® \We aim to estimate specific model parameters

Useful approximation even when reality is more complex

Causal interpretations require strong assumptions:

® No unmeasured confounders
® Correct functional form
® Proper temporal ordering
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Regression for Scientific Understanding

When using regression to describe underlying processes:
® We assume data generation follows our specified model
® \We aim to estimate specific model parameters

® Useful approximation even when reality is more complex

Causal interpretations require strong assumptions:

® No unmeasured confounders
® Correct functional form
® Proper temporal ordering
Model Selection for Scientific Understanding:
® Helps identify parsimonious explanatory models
® F-tests can compare nested models for specific hypotheses

® Information criteria (AIC, BIC) help approximate "true model”
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Regression for Prediction

Core Principles:
® Focus on predicting new data, not fitting existing data
® No assumption of causality required
® Goal: minimize prediction error on unseen observations

® Trade-off: model complexity vs. generalizability
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Regression for Prediction

Core Principles:
® Focus on predicting new data, not fitting existing data
® No assumption of causality required

® Goal: minimize prediction error on unseen observations

Trade-off: model complexity vs. generalizability

Model Selection for Prediction:
® RSS alone is insufficient: RSS = >".(y; — 9i)?
® Complex models always reduce RSS but may overfit

® Better approaches:

® Cross-validation (train/test splits)
® Regularization (Ridge, LASSO)
® [nformation criteria with complexity penalties

Optimal model complexity depends on sample size and noise
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Bias-Variance Trade-off

® |n statistics, the bias-variance trade-off is a fundamental constraint
® Two competing reasons for why our predictive model may not perform well:

® Bias: We don’t include the right covariates in our model, so the model we are
fitting is inherently wrong (but may still be useful)

® Variance: The model we are fitting is very complex relative to the amount of
data we have, so our estimated parameters are not very precise

Expected Prediction Error:

E[(Y — f(X))?] = Bias® + Variance + Irreducible Error

As model complexity increases:
® Bias decreases (better fit to training data)
® Variance increases (more sensitive to sampling)
® Total error follows U-shaped curve

® Goal: Find optimal complexity that minimizes total error
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Bias-Variance Trade-off

Bias and variance in making cakes:

Figure: High Bias, Low Variance
Figure: Low Bias, High Variance

® Betty Crocker: Simple recipe, consistent results but not gourmet (high bias,
low variance)

® Home made: Complex recipe, potentially amazing but more variable results
(low bias, high variance)
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Bias-Variance Example

Suppose data are generated by the model for i =1,.... n:
50
Yi=bot+ ) biXixtei
k=1
COV(X,"k,X,'J) = 1/5 var(X,-,k) =1
e; ~ N(0,16)
Experiment:

@ Form=12...50

@ Fit a model using only the first m predictors (omitting the rest)
@ When m is smaller, the model we fit is “more biased”

@ Using estimated BO, 131, ceey b, predict y; for new data

@ Measure RSS (y; — §;)? on observed data

@ Measure prediction error (y; — $;) on new data

Soring 3035 e



Bias-Variance Example Results

Sample size = 52

® Outof Sample
® In Sample
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Bias-Variance Example Results

Sample size = 60
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Bias-Variance Example Results

Sample size = 80
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Models and Parameters

Structural Decisions

Model Selection: Which variables do we include?
® Linear vs. non-linear relationships
® |nteraction terms
® Polynomial terms

® Variable transformations

Estimation
Parameter Estimation: What are the coefficients for included variables?
® Ordinary least squares (OLS)
® Maximum likelihood estimation (MLE)
® Regularized approaches (Ridge, LASSO)
® Robust estimators
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Class Discussion

Scientific Understanding;: Prediction:
® What are examples in your work ® What are examples where you
where you need a causal model? need predictive models?
® \What assumptions are critical for ® How do you evaluate predictive
your analysis? performance?
® How do you validate these ® What techniques do you use to
assumptions? avoid overfitting?

Your Turn: ldentify a research question where the
distinction between causal and predictive modeling would
be crucial.
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Cross-Validation: Assessing Predictive Performance
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The Challenge of Generalization

Key Question in Predictive Modeling:
How well will our model perform on new, unseen data? J

® Training error is an overly optimistic measure of predictive performance
® We need methods to estimate generalization error accurately

® Cross-validation provides a principled approach to this problem
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Generalization Error: The Goal of Predictive Modeling

We want to minimize the expected prediction error on new observations:
® Define a loss function L(y;, §;) that quantifies prediction error

® For continuous outcomes: L(y;, %) = (yi — $i)* (squared error)
® For categorical outcomes: L(y;, Vi) = 1;y,2,) (misclassification)

® Our goal: Minimize E[L(Vnews Vnew)]

® The fundamental challenge: We don't have access to the true distribution
of future data

® Solution: Use existing data to simulate the process of predicting new
observations
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Cross-Validation: Core Concept

The Central Idea of Cross-Validation

Repeatedly split data into training and testing sets to estimate how well models
will generalize to new data.

The general procedure:
@ Set aside a portion of your data as a " test set”
@ Train your model on the remaining data (the "training set")
© Evaluate model performance on the test set
@ Repeat this process with different train/test splits

Key benefit: Every observation serves as both training and test data across
iterations
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Leave-One-Out Cross-Validation (LOOCV)

Procedure:

@ For each observation i in your dataset:

® Train model on all observations except i
® Predict y; for the held-out observation
® Calculate error: e = y; — yi

@ The LOOCYV estimate of prediction error is:
n

1 1
Ve = - > Ly gi) = - > e
i=1

i=1
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Leave-One-Out Cross-Validation: Visualization

Xl,l X2 X1,3 k&
X5 Xya Xos Y,
Xa, N )(3‘2 X3.3 Y,
X g X - X g Y,
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Leave-One-Out Cross-Validation: Visualization
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Leave-One-Out Cross-Validation: Visualization
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Leave-One-Out Cross-Validation: Visualization
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Leave-One-Out Cross-Validation: Visualization

x1,1 xl‘z XLs L&
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Properties of LOOCV

Advantages: Disadvantages:
® Nearly unbiased estimate of e Computationally expensive (fit
generalization error model n times)
® Maximizes the size of the training ® High variance in the estimate
set e Test sets consist of single
® Deterministic (no randomness in observations
the splits) e Less effective for model selection

® Especially useful for small datasets
® The LOOCV error differs from RSS because each y; is computed from a
different model
® For linear regression, there is a computational shortcut:
1 n Vi — }I}i 2
Vim = E.Z (1 - h,-,-)

i=1

where h;; is the ith diagonal element of the "hat matrix”
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Train-Test Split: The Simplest Approach

Procedure:
© Randomly split data into training set (e.g., 70-80%) and test set (20-30%)
@ Train model using only the training set

© Evaluate performance on the held-out test set

Advantages:
e Computationally efficient (fit model only once)
® Simple to implement
® Mimics real-world application scenario
Disadvantages:
® Results depend on the specific random split

® Less efficient use of data (some observations never train the model)
® Higher variance in the error estimate
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K-Fold Cross-Validation: The Practical Solution

Procedure:
@ Randomly divide data into K equal-sized folds (typically K =5 or K = 10)
@ For each fold k=1,2,...,K:

® Train model on all folds except fold k
® Evaluate performance on fold k

© Average the error across all K folds:

K
1
CV(K) = R Z EI’I’OI’k
k=1
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K-Fold Cross-Validation: Visualization
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K-Fold Cross-Validation: Visualization
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K-Fold Cross-Validation: Visualization
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Comparing Cross-Validation Methods

Method Bias Variance  Computation
LOOCV Lowest Highest = Most expensive
K-fold CV Low Medium Moderate

Train-Test Split

Highest Lowest Least expensive

K-fold CV is often the preferred method:

® Good balance between bias and variance

® More efficient use of data than simple train-test split

® |ess computationally intensive than LOOCV

® K =5 or K =10 typically works well in practice

partitions

For added stability, repeat K-fold CV multiple times with different random
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Cross-Validation for Model Selection

Cross-validation provides a principled approach to comparing different models:
@ For each candidate model:

® Perform cross-validation
® Calculate CV error estimate

@ Select model with lowest CV error
© Refit selected model on full dataset

Important Note

When using CV for both model selection and performance estimation, use nested
cross-validation to avoid selection bias in your final error estimate!
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Putting It All Together: The Model Building Process

@ Define your prediction task and loss function

@ Select candidate models to compare

© Use cross-validation to estimate generalization error for each model
@ Select the model with the lowest cross-validation error

@ Refit the selected model on the full dataset

@ If desired, evaluate final model on a completely held-out test set

Key Takeaways
® Cross-validation provides an objective way to assess predictive performance
® |t helps manage the bias-variance tradeoff in model selection

® Different CV approaches offer tradeoffs between bias, variance, and
computational cost

® The goal is always to find models that generalize well to new, unseen data
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