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Model Selection Recap

Module 5: part 2 BTRY 6020 Spring 2025 2 / 26



Recap

• When selecting a model which will perform well on new data, we can’t just
consider how well it performs on the data it is fit to

• Choosing the level of complexity involves a bias vs variance trade-off
• Including more “truly relevant” covariates can improve prediction (decrease

bias)
• Including more covariates means b̂ are generally not estimated as well

(increase variance)
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Leave one out cross validation

Cross validation gives us a way to estimate how a model will perform on “new
data”
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Leave one out

• This is called leave one out cross-validation

• The cross validation score is:∑
i

(yi − ŷi )
2 =

∑
i

e2i

• Not quite RSS since the model we use for ŷi is different each time

• The model that produces ŷi was fit without using the ith observation

• This is an unbiased estimator of generalization error; i.e., how well your
model will generalize to new data

• Depending on how computationally intensive your model is, and how many
data points you have, this may be computationally infeasible
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K-fold cross validation
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K-fold cross validation
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K-fold cross validation
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Recap

• Several ways to select a training set (data used to estimate parameters of
model) and test set (data used to evaluate performance)

• Leave One Out
• K-fold CV

• Because the “best” model selection will also depend on the number of
observations you have, Leave One Out will generally be best, but also has the
highest computational cost

• Use approximations instead which only require fitting the model once

• Models with the lower cross validation scores are better

Module 5: part 2 BTRY 6020 Spring 2025 7 / 26



The Model Selection Problem

• Core challenge: Finding the optimal balance between model complexity and
predictive performance

• Overfitting: Complex models may fit training data perfectly but perform
poorly on new data

• Underfitting: Simple models may miss important patterns in the data
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Penalized Scores for Model Selection
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R2 and Its Limitations

R2 = 1− RSS∑
i (yi − ȳ)2

• Measures how well model fits training data

• Key issue: R2 always increases with
additional predictors

• This incentivizes unnecessarily complex
models

Variables

R2

1.0
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Adjusted R2: A First Approach

Adjusted R2 Formula

R2
adj = 1−

n
n−p−1RSS∑
i (yi − ȳ)2

• Improvement: Penalizes for model complexity via n
n−p−1 factor

• p = number of predictors in the model

• Theoretical limitation: Penalty is too weak

• Often selects models that are still too complex

• Better than regular R2, but inferior to AIC/BIC/CV for model selection
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Akaike Information Criterion (AIC)

AIC for Linear Regression with Gaussian Errors

AIC = −n

2
log

(
RSS

n

)
− (p + 2)

• p = number of coefficients (excluding intercept)

• Interpretation: Higher AIC values indicate better models

• Note: Different resources may multiply AIC by −2 or 2, changing
interpretation

• Theoretical foundation: AIC is an unbiased estimator of expected
out-of-sample prediction error

• Computational advantage: Fast approximation of cross-validation
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AIC and Cross-Validation: Theoretical Properties

• As sample size n → ∞:
• Both AIC and CV select models

with near-optimal generalization
error

• Both tend to select slightly more
complex models than the
theoretical optimum

• This happens because more
complex models have higher
variability in their error estimates

Figure: AIC vs. True Error
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Bayesian Information Criterion (BIC)

BIC for Linear Regression with Gaussian Errors

BIC = −n

2
log

(
RSS

n

)
− log(n)

2
(p + 2)

• Key difference from AIC: Complexity penalty grows with sample size n

• Comparison:
• AIC penalty: (p + 2)
• BIC penalty: log(n)

2
(p + 2)

• Consequence: BIC favors simpler models than AIC, especially with large
datasets

• Theoretical property: BIC is consistent - will select the true model as
n → ∞ (if true model exists in candidate set)
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Comparing Model Selection Criteria

Criterion Complexity Penalty Consistency Prediction Computation
R2 None No Poor Fast
Adjusted R2 Weak No Moderate Fast
AIC Moderate No Good Fast
BIC Strong Yes Good* Fast
Cross-Validation Flexible No Excellent Slow

Table: *BIC may underperform AIC for prediction with finite samples

• No perfect criterion - choice depends on goals:
• Pure prediction: Cross-validation or AIC
• Finding true model: BIC (if you believe a true model exists)

Module 5: part 2 BTRY 6020 Spring 2025 15 / 26



Computational Strategies for Model Selection
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The Computational Challenge

Number of Possible Models
With p potential predictors, we have 2p possible models

Number of predictors Possible models Feasibility
5 25 = 32 Trivial
10 210 = 1, 024 Easy
20 220 = 1, 048, 576 Challenging
30 230 ≈ 1 billion Impractical
60 260 ≈ number of sand grains on Earth Impossible

We need efficient search strategies!
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Branch and Bound Algorithm

Key Insight

We can eliminate entire groups of models without evaluating each one individually

• Consider a set of models {M1,M2, . . . ,MS}
• Let Msup be a model containing all covariates that appear in at least one

model in our set

• Let pmin be the number of covariates in the smallest model in our set

• For all models Ms in our set: RSS(Ms) ≥ RSS(Msup)

Upper Bound for AIC

AIC(Ms) ≤ −n

2
log

(
RSS(Msup)

n

)
− (pmin + 2)
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Branch and Bound: Practical Application

• Key advantage: If we find any model with AIC exceeding our upper bound,
we can eliminate all models in our set without evaluating them

• Effectiveness varies:
• Best case: Drastically reduces computation
• Worst case: Similar to exhaustive search

• Practical limit: Up to 30 predictors

• Software implementation: leaps package in R

• Applicability: Works with both AIC and BIC

• Limitation: Specialized for linear regression (uses computational tricks
specific to linear models)
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Stepwise Selection Methods

When Exhaustive Search Is Infeasible
Stepwise methods provide heuristic approaches that:

• Are computationally efficient

• Work for various model types (not just linear regression)

• Usually find good (though not guaranteed optimal) solutions

Two Main Approaches
• Forward selection: Start simple, add variables

• Backward selection: Start complex, remove variables
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Forward Selection Algorithm

How Forward Selection Works
A greedy algorithm that builds a model iteratively:

• Start with an empty model (no predictors)

• At each step, add the most significant variable

• Continue until no remaining variables improve the model

Algorithm Steps
1 Start with an intercept-only model
2 For each candidate variable not in the model:

• Fit model with the variable added
• Compute selection criterion (e.g., p-value, AIC, BIC)

3 Add variable that most improves the criterion (if significant)

4 Repeat steps 2-3 until no further improvement
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Forward Selection Algorithm

Advantages & Limitations

Advantages

• Computationally efficient

• Easy to implement

• Interpretable process

Limitations

• May miss optimal subset

• Ignores multicollinearity

• Cannot remove variables once
added
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Backward Selection Algorithm

How Backward Selection Works
A pruning algorithm that simplifies a model iteratively:

• Start with the full model (all predictors)

• At each step, remove the least significant variable

• Continue until all remaining variables are significant

Algorithm Steps
1 Start with all variables in the model
2 For each variable currently in the model:

• Compute significance measure (e.g., p-value, t-statistic)
• Identify least significant variable

3 Remove least significant variable if below threshold

4 Repeat steps 2-3 until all variables meet significance criterion
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Backward Selection Algorithm

Advantages & Limitations

Advantages

• Considers interactions between all
variables initially

• May detect effects hidden by
confounders

• Works well with many predictor
variables

Limitations

• Requires fitting full model first

• Computationally intensive with
many variables

• Cannot reconsider variables once
removed
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Computational Complexity of Stepwise Methods

• Forward selection:
• At step i : evaluate (p − i) models
• Maximum steps: p
• Total evaluations: O(p2)

• Backward selection:
• At step i : evaluate i models
• Maximum steps: p
• Total evaluations: O(p2)

• Compared to exhaustive: O(p2) vs. O(2p)

• Important note: Forward and backward selection may yield different models

• Hybrid approaches: Can allow both addition and removal at each step
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Summary: Model Selection Best Practices

Selection Criteria

• Avoid: R2 (no penalty)

• Adequate: Adjusted R2 (weak
penalty)

• Better: AIC/BIC (theoretically
grounded)

• Best: Cross-validation (directly
measures generalization)

Search Strategies

• Small p (< 30): Branch and bound

• Large p: Stepwise methods

• Modern alternatives: LASSO,
Elastic Net (next lecture)

Final Recommendations
• Always validate your final model on holdout data

• Consider your goals: prediction vs. explanation

• Incorporate domain knowledge when possible

• Remember model selection introduces additional uncertainty
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