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Logistics

® Wrapping up Module 5 today (hopefully)
® Next module will be on generalized linear models (GLMs)
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Recap: The Model Selection Problem

® Given a large set of potential predictors, how can we select an optimal model
(i.e., a subset of covariates)?
Primary objective: Select a model that generalizes well to unseen data
We aim to minimize the generalization error, which requires:
Avoiding the trap of simply evaluating performance on training data
Finding the optimal complexity through the bias-variance trade-off:
® Including relevant covariates reduces bias (improves prediction accuracy)
® Too many covariates increases variance in parameter estimates ,@
® The goal is finding the "sweet spot” between underfitting and overfitting

Sample size = 52

® Outof Sample
* In Sample
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Model Evaluation Criteria

® Given a candidate model (a specific set of covariates), we can assess its
generalization error using:

® Cross-validation (CV)
® |nformation-theoretic criteria:

AIC = —g log(RSS/n) — (p+2)

BIC = —g log(RSS/n) — @(p—k 2)

* Key differences:

® AIC: Asymptotically efficient (minimizes prediction error)
® BIC: More severe penalty for complexity (log(n) factor)
® BIC: Consistent (selects true model with probability 1 as n — o)

® Computational challenge: With p predictors, we have 2P possible models
to compare
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Branch and Bound: Efficient Model Search

Instead of exhaustively fitting all 2P models, branch and bound uses mathematical
properties to eliminate entire groups of suboptimal models.

Theoretical Foundation

® Consider a set of models {My, M, ..., Ms} which is a subset of all candidate
models

® |et pmin be the minimum number of covariates in this subset, so ps > pmin
for all s

® Define My, as the supermodel that contains every covariate appearing in at
least one model from {My, M, ... Ms}

® Key property: Each model M is nested within My,

® This implies: RSS(Msyp) < RSS(Ms) for all s (the supermodel always fits at
least as well)

AIC(M,) = =3 log(RSS(Ms)/n) — (ps +2)

< —g log(RSS(Msup)/n) — (Pmin + 2)
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Branch and Bound: Implementation and Applications

® Pruning the search tree: If we find any model (outside our considered
subset) with AIC better than our calculated upper bound, we can eliminate
the entire group {My, M, ..., Ms} without computing individual RSS values
® Computational efficiency:
® Best case: Dramatic reduction in computation time
® Worst case: Still requires fitting most models (similar to exhaustive search)
® Practical limit: Generally feasible for problems with up to 30 — 35 covariates
® Extensions:
® Works equally well with BIC or other nested criteria
® Can be adapted for generalized linear models

® Implemented in R package leaps (function regsubsets)
® Modern alternatives: bestglm, glmulti packages

Soring 3035 e



Forward Selection: Algorithm

® Forward selection is a greedy stepwise procedure that builds a model
sequentially
e Algorithm:
@ Start with only an intercept (null model)
@ Consider all models formed by adding a single covariate to the current model
© Select the model with the best criterion value (highest AIC/BIC or lowest CV
error)
@ If the best model improves the criterion, update the current model
© Repeat steps 2-4 until no additional covariate improves the criterion
® Advantages:
® Computationally efficient: examines only O(p?) models vs. O(2°) for
exhaustive search
® Easy to implement and interpret
® Limitations:
® Greedy algorithm: may miss optimal model due to variable interactions
® Once a variable enters the model, it cannot be removed

Module 5: part 3 Spring 2025 7/20



Example: Forward Selection Process

Suppose we have 5 covariates { X1, X2, X3, Xa, Xs} under consideration
® Step 1: Start with intercept-only model, AIC({bo}) = 2
® Step 2: Evaluate all single-covariate additions
© AIC({bo,X1}) =1 and AIC({bo, Xo}) =4
© AIC({bo,Xs}) =4 and AIC({bo,Xs})=6 = Highest AIC
L4 A/C({bo,X5}) =5
e Step 3: Update current model to {bg, X4} with AIC =6
Step 4: Evaluate all possible additions to {bg, Xs}
o AIC({bo,Xs,X1}) =5 and AIC({bo, Xa, Xo}) =8
© AIC({bo, Xs,Xs}) =7 and AIC({bo,Xa,Xs}) =10 = Highest AIC
® Step 5: Update current model to {bg, X4, X5} with AIC = 10
Step 6: Evaluate all possible additions to {bg, Xs, X5}
® AIC({bo, Xa, X5, X1}) =9
® AIC({bo, Xa, X5, X2}) = 9.5
® AIC({bo, Xa, X5, X3}) =9
® Step 7: Terminate - No addition improves AlIC
® Final model selected: {bg, X4, X5} with AIC =10
Note: This example demonstrates how forward selection may not explore all
possible interactions, potentially missing the global optimum.
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Backward Elimination: Algorithm

® Backward elimination works in the opposite direction of forward selection
® Algorithm:
@ Start with the full model (all covariates included)
@ Consider all models formed by removing a single covariate from the current
model
@ Select the model with the best criterion value (highest AIC/BIC or lowest CV
error)
@ If the best model improves the criterion, update the current model
© Repeat steps 2-4 until no removal improves the criterion
e Advantages:
® Considers interactions between variables from the beginning
® Better when most variables are relevant but a few are noise
® More computationally feasible than exhaustive search: examines O(p?) models
® Limitations:

® Requires fitting the full model initially (problematic when p > n)
® Still a greedy algorithm that may miss the optimal model
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Example: Backward Elimination Process

Suppose we have 5 covariates { X1, X2, X3, Xa, Xs} under consideration
® Step 1: Start with full model, AIC({bo, X1, X2, X3, X4, X5}) =6
® Step 2: Evaluate all single-covariate removals
L4 AIC({[J()7 )(27 )(37 X4, X5}) =6.5 = Highest AlC
o AIC({bo, X1, X3, X4, Xs}) = 6.2 and  AIC({bo, X1, X2, Xa, Xs}) =5
© AIC({bo, X1, Xo, X3, Xs}) =5.8 and  AIC({bo, X1, X2, Xs, Xa}) = 4.9
e Step 3: Update current model to {bg, X2, X3, X4, X5} with AIC = 6.5
Step 4: Evaluate all possible removals from {bg, Xz, X3, X4, X5}
o AIC({bo, X3, Xs,Xs}) = 6.7 = Highest AIC
© AIC({bo, X2, Xs,Xs}) =55 and AIC({bo, Xz, X3, Xs}) = 5.9
L4 A/C({bo7X2,X3,X4}) =52
e Step 5: Update current model to {bg, X3, Xa, X5} with AIC = 6.7
Step 6: Evaluate all possible removals from {bg, X3, Xs, X5}
° AIC({bo, Xa, Xs}) = 6.5 and AIC({bo, X3, Xs}) = 6.1
o AIC({bo, X3,Xs}) = 5.5
® Step 7: Terminate - No removal improves AlC
® Final model selected: {bg, X3, X4, X5} with AIC = 6.7
Note: Compare with forward selection result { by, Xq, X5} - different algorithms
may yield different models!
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Stepwise Selection and Alternative Approaches

® Stepwise selection: Combines forward and backward approaches
@ Start with an intercept-only model
@ Add variables sequentially as in forward selection
@ After each addition, check if removing any previously added variable improves
the criterion

® Comparison of stepwise methods:

Forward selection: Works well when the final model has few variables (sparse)
Backward elimination: Better when most variables are relevant

Stepwise: More flexible but still not guaranteed to find the optimal model

[ )
[ ]
[ ]
® All are computationally efficient but potentially suboptimal
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Factors Affecting Model Selection Performance

When is model selection more challenging or more reliable?
® Sample size (n):
® |arger sample sizes provide more information for accurate model selection
® Small samples increase the risk of spurious correlations
® Number of potential covariates (p):

® More covariates exponentially increase the search space (2° possible models)
® Higher dimensionality increases the chance of finding spurious predictors

e Effect size (magnitude of coefficients):

® | arger effects are easier to detect
® Small but important effects may be missed, especially in small samples

e Correlation structure:

® Highly correlated predictors make variable selection more difficult
® Multicollinearity can lead to unstable estimates and inconsistent selection
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Simulation Study: Impact of Sample Size and
Dimensionality

® Simulation setup:
® Uncorrelated covariates: X; ~ N(0,1)

® True model: by = by = ... = bs = 0.25, all others bs = ... = b, =0
AIC: Proportion Correct BIC: Proportion Correct
P p
n 10 20 30 n 10 20 30

50 | 0.04 | 0.01 | 0.00 50 | 0.01 | 0.00 | 0.00
100 | 0.16 | 0.03 | 0.01 100 | 0.07 | 0.05 | 0.04
200 | 0.37 | 0.06 | 0.01 200 | 0.47 | 0.38 | 0.28
800 | 0.45 | 0.06 | 0.01 800 | 0.95 | 0.85 | 0.76

Key observations:
® BIC outperforms AIC for model selection consistency (especially at larger
sample sizes)
® Performance deteriorates as p increases (search space grows exponentially)
® |arger sample sizes dramatically improve selection accuracy

Soring 3035 e



Simulation Study: Impact of Correlation Structure

® Simulation setup:

® Comparing uncorrelated vs. correlated (cor(Xj, Xk) = 0.25) predictors

® True model: by = bo = ... = bs = 0.25, all others bg = ... = b, =0
Uncorrelated (BIC) Correlated (BIC)
p p
n 10 20 30 n 10 20 30
50 | 0.01 | 0.00 | 0.00 50 | 0.00 | 0.00 | 0.00
100 | 0.07 | 0.05 | 0.04 100 | 0.02 | 0.01 | 0.01
200 | 0.47 | 0.38 | 0.28 200 | 0.30 | 0.20 | 0.16
800 | 0.95 | 0.85 | 0.76 800 | 0.96 | 0.85 | 0.78

Key observations:

® Correlation among predictors makes model selection more challenging

® The effect is particularly pronounced at moderate sample sizes

® With very large samples, both scenarios perform similarly

® Multicollinearity remains a fundamental challenge for model selection
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Simulation Study: Impact of Effect Size

® Simulation setup:

® Uncorrelated covariates

® True model: by = by =...=bs =3, all others b = ... = b, =0
® Varying effect size: 8 € {0.25,0.5,1.0}

8 =0.25 =05 8 =10

p P P
n 10 20 30 n 10 20 30 n 10 20 30
50 0.01 0.00 0.00 50 0.45 0.18 0.08 50 0.70 0.32 0.13
100 0.07 0.05 0.04 100 0.81 0.53 0.32 100 0.81 0.57 0.35
200 0.47 0.38 0.28 200 0.89 0.67 0.53 200 0.88 0.69 0.54
800 0.95 0.85 0.76 800 0.95 0.86 0.80 800 0.95 0.86 0.78

Key observations:

® |arger effect sizes are much easier to detect, especially with small samples

® Even with small effects, large samples can achieve high accuracy

® Signal-to-noise ratio is a critical factor in model selection performance
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Simulation Study: Model Size Selection

® Simulation setup:

® Uncorrelated covariates

® True model size =5 (by = b, = ... = bs = 0.25, all others zero)
AIC: Average Model Size BIC: Average Model Size
p p

n 10 20 30 n 10 20 30

50 | 421 | 7.07 | 11.77 50 | 2.41 | 3.44 | 5.16

100 | 5.15 | 7.22 9.67 100 | 3.22 | 3.79 | 4.13

200 | 5.74 | 7.52 9.52 200 | 453 | 4.76 | 5.03

800 | 5.76 | 7.35 9.14 800 | 5.05 | 5.16 | 5.28

® AIC tends to select larger models (overfitting)

Key observations:

® BIC is more conservative and closer to the true model size (especially at large

n)

® With small samples, BIC tends to underfit (models too small)

® With large samples, BIC converges to the correct model size
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Post-Selection Inference: The Challenge

® The statistical issue: Standard inference is invalid after model selection

® Model selection procedures use the data to choose variables
® This invalidates the sampling distributions of test statistics
® Results in inflated significance and narrower confidence intervals than

warranted

® Analogy: The "Instagram effect”
® Your friend's Instagram feed shows only their best moments
® Comparing your average life to their curated feed is an unfair comparison

® Similarly, examining only the "selected” variables gives a biased view

® Formal issue: Conditioning on selection events changes the sampling
distribution

® Variables are selected because they appear significant in the sample
® This creates a "winner's curse” - effects appear stronger than they truly are

® Standard p-values and confidence intervals no longer have their claimed

properties

17 /20
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Post-Selection Inference: Valid Approaches

® Data splitting: The simplest valid approach

@ Split data into two independent parts: training and test sets (typically 50/50)
@ Use training data exclusively for model selection (exploratory analysis, stepwise
procedures, etc.)

© Use test data exclusively for inference (hypothesis tests, confidence intervals)
@ Test set inference is valid because it's independent of selection process

® Limitations of data splitting:
® Reduced power due to smaller sample size for both tasks
® Confidence intervals are wider due to using only n/2 observations

® Trade-off: Is eliminating irrelevant variables worth the cost of using half the
data?

® Advanced alternatives (beyond scope of this lecture):

® Selective inference methods that adjust for selection
® Multiple testing corrections
® Bootstrapping and subsampling approaches
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Key Takeaways

® Model selection is fundamentally about finding the optimal trade-off between
bias and variance

® |nformation criteria (AIC, BIC) provide theoretically justified approaches to
this trade-off

® The computational challenge grows exponentially with the number of
predictors (2P possible models)

® Branch and bound offers an efficient exact search strategy when feasible

® For high-dimensional problems (p > 30), consider:

® Stepwise procedures (computationally efficient but potentially suboptimal)
® Regularization methods (lasso, elastic net)
® Domain knowledge to reduce the initial variable set

® Remember: The "best” model depends on your objective (prediction vs.
inference)
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Key Takeaways

® Model selection fundamentals:
® Finding the optimal trade-off between bias and variance
® Balancing model complexity with generalization performance
e Selection methods:
® Exhaustive search with branch and bound (when computationally feasible)
® Forward/backward/stepwise procedures (efficient but potentially suboptimal)
® Regularization methods (lasso, ridge, elastic net) for high-dimensional
problems
® Performance factors:
® Sample size, number of predictors, effect size, and correlation structure
® BIC tends to select more parsimonious models than AIC
® BIC is consistent for model selection with large samples
® Valid inference:
® Standard inference is invalid after data-driven model selection
® Data splitting provides valid inference at the cost of reduced power
® The "best” approach depends on your objective (prediction vs. inference)
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