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Logistics

• Wrapping up Module 5 today (hopefully)

• Next module will be on generalized linear models (GLMs)
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Recap: The Model Selection Problem

• Given a large set of potential predictors, how can we select an optimal model
(i.e., a subset of covariates)?

• Primary objective: Select a model that generalizes well to unseen data
• We aim to minimize the generalization error, which requires:
• Avoiding the trap of simply evaluating performance on training data
• Finding the optimal complexity through the bias-variance trade-off:

• Including relevant covariates reduces bias (improves prediction accuracy)
• Too many covariates increases variance in parameter estimates β̂
• The goal is finding the ”sweet spot” between underfitting and overfitting

Figure: The U-shaped relationship between model complexity and prediction error
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Model Evaluation Criteria

• Given a candidate model (a specific set of covariates), we can assess its
generalization error using:

• Cross-validation (CV)
• Information-theoretic criteria:

AIC = −n

2
log(RSS/n)− (p + 2)

BIC = −n

2
log(RSS/n)− log(n)

2
(p + 2)

• Key differences:
• AIC: Asymptotically efficient (minimizes prediction error)
• BIC: More severe penalty for complexity (log(n) factor)
• BIC: Consistent (selects true model with probability 1 as n → ∞)

• Computational challenge: With p predictors, we have 2p possible models
to compare
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Branch and Bound: Efficient Model Search

Instead of exhaustively fitting all 2p models, branch and bound uses mathematical
properties to eliminate entire groups of suboptimal models.

Theoretical Foundation
• Consider a set of models {M1,M2, . . . ,MS} which is a subset of all candidate
models

• Let pmin be the minimum number of covariates in this subset, so ps ≥ pmin

for all s
• Define Msup as the supermodel that contains every covariate appearing in at

least one model from {M1,M2, . . . ,MS}
• Key property: Each model Ms is nested within Msup

• This implies: RSS(Msup) ≤ RSS(Ms) for all s (the supermodel always fits at
least as well)

AIC (Ms) = −n

2
log(RSS(Ms)/n)− (ps + 2)

≤ −n

2
log(RSS(Msup)/n)− (pmin + 2)
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Branch and Bound: Implementation and Applications

• Pruning the search tree: If we find any model (outside our considered
subset) with AIC better than our calculated upper bound, we can eliminate
the entire group {M1,M2, . . . ,MS} without computing individual RSS values

• Computational efficiency:
• Best case: Dramatic reduction in computation time
• Worst case: Still requires fitting most models (similar to exhaustive search)
• Practical limit: Generally feasible for problems with up to 30− 35 covariates

• Extensions:
• Works equally well with BIC or other nested criteria
• Can be adapted for generalized linear models
• Implemented in R package leaps (function regsubsets)
• Modern alternatives: bestglm, glmulti packages
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Forward Selection: Algorithm

• Forward selection is a greedy stepwise procedure that builds a model
sequentially

• Algorithm:
1 Start with only an intercept (null model)
2 Consider all models formed by adding a single covariate to the current model
3 Select the model with the best criterion value (highest AIC/BIC or lowest CV

error)
4 If the best model improves the criterion, update the current model
5 Repeat steps 2-4 until no additional covariate improves the criterion

• Advantages:
• Computationally efficient: examines only O(p2) models vs. O(2p) for

exhaustive search
• Easy to implement and interpret

• Limitations:
• Greedy algorithm: may miss optimal model due to variable interactions
• Once a variable enters the model, it cannot be removed
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Example: Forward Selection Process

Suppose we have 5 covariates {X1,X2,X3,X4,X5} under consideration
• Step 1: Start with intercept-only model, AIC ({b0}) = 2
• Step 2: Evaluate all single-covariate additions

• AIC({b0,X1}) = 1 and AIC({b0,X2}) = 4
• AIC({b0,X3}) = 4 and AIC({b0,X4}) = 6 ⇒ Highest AIC
• AIC({b0,X5}) = 5

• Step 3: Update current model to {b0,X4} with AIC = 6
• Step 4: Evaluate all possible additions to {b0,X4}

• AIC({b0,X4,X1}) = 5 and AIC({b0,X4,X2}) = 8
• AIC({b0,X4,X3}) = 7 and AIC({b0,X4,X5}) = 10 ⇒ Highest AIC

• Step 5: Update current model to {b0,X4,X5} with AIC = 10
• Step 6: Evaluate all possible additions to {b0,X4,X5}

• AIC({b0,X4,X5,X1}) = 9
• AIC({b0,X4,X5,X2}) = 9.5
• AIC({b0,X4,X5,X3}) = 9

• Step 7: Terminate - No addition improves AIC
• Final model selected: {b0,X4,X5} with AIC = 10

Note: This example demonstrates how forward selection may not explore all
possible interactions, potentially missing the global optimum.
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Backward Elimination: Algorithm

• Backward elimination works in the opposite direction of forward selection

• Algorithm:
1 Start with the full model (all covariates included)
2 Consider all models formed by removing a single covariate from the current

model
3 Select the model with the best criterion value (highest AIC/BIC or lowest CV

error)
4 If the best model improves the criterion, update the current model
5 Repeat steps 2-4 until no removal improves the criterion

• Advantages:
• Considers interactions between variables from the beginning
• Better when most variables are relevant but a few are noise
• More computationally feasible than exhaustive search: examines O(p2) models

• Limitations:
• Requires fitting the full model initially (problematic when p > n)
• Still a greedy algorithm that may miss the optimal model
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Example: Backward Elimination Process

Suppose we have 5 covariates {X1,X2,X3,X4,X5} under consideration
• Step 1: Start with full model, AIC ({b0,X1,X2,X3,X4,X5}) = 6
• Step 2: Evaluate all single-covariate removals

• AIC({b0,X2,X3,X4,X5}) = 6.5 ⇒ Highest AIC
• AIC({b0,X1,X3,X4,X5}) = 6.2 and AIC({b0,X1,X2,X4,X5}) = 5
• AIC({b0,X1,X2,X3,X5}) = 5.8 and AIC({b0,X1,X2,X3,X4}) = 4.9

• Step 3: Update current model to {b0,X2,X3,X4,X5} with AIC = 6.5
• Step 4: Evaluate all possible removals from {b0,X2,X3,X4,X5}

• AIC({b0,X3,X4,X5}) = 6.7 ⇒ Highest AIC
• AIC({b0,X2,X4,X5}) = 5.5 and AIC({b0,X2,X3,X5}) = 5.9
• AIC({b0,X2,X3,X4}) = 5.2

• Step 5: Update current model to {b0,X3,X4,X5} with AIC = 6.7
• Step 6: Evaluate all possible removals from {b0,X3,X4,X5}

• AIC({b0,X4,X5}) = 6.5 and AIC({b0,X3,X5}) = 6.1
• AIC({b0,X3,X4}) = 5.5

• Step 7: Terminate - No removal improves AIC
• Final model selected: {b0,X3,X4,X5} with AIC = 6.7

Note: Compare with forward selection result {b0,X4,X5} - different algorithms
may yield different models!
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Stepwise Selection and Alternative Approaches

• Stepwise selection: Combines forward and backward approaches
1 Start with an intercept-only model
2 Add variables sequentially as in forward selection
3 After each addition, check if removing any previously added variable improves

the criterion

• Comparison of stepwise methods:
• Forward selection: Works well when the final model has few variables (sparse)
• Backward elimination: Better when most variables are relevant
• Stepwise: More flexible but still not guaranteed to find the optimal model
• All are computationally efficient but potentially suboptimal
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Factors Affecting Model Selection Performance

When is model selection more challenging or more reliable?

• Sample size (n):
• Larger sample sizes provide more information for accurate model selection
• Small samples increase the risk of spurious correlations

• Number of potential covariates (p):
• More covariates exponentially increase the search space (2p possible models)
• Higher dimensionality increases the chance of finding spurious predictors

• Effect size (magnitude of coefficients):
• Larger effects are easier to detect
• Small but important effects may be missed, especially in small samples

• Correlation structure:
• Highly correlated predictors make variable selection more difficult
• Multicollinearity can lead to unstable estimates and inconsistent selection
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Simulation Study: Impact of Sample Size and
Dimensionality

• Simulation setup:
• Uncorrelated covariates: Xj ∼ N(0, 1)
• True model: b1 = b2 = . . . = b5 = 0.25, all others b6 = . . . = bp = 0

AIC: Proportion Correct
p

n 10 20 30
50 0.04 0.01 0.00
100 0.16 0.03 0.01
200 0.37 0.06 0.01
800 0.45 0.06 0.01

BIC: Proportion Correct
p

n 10 20 30
50 0.01 0.00 0.00
100 0.07 0.05 0.04
200 0.47 0.38 0.28
800 0.95 0.85 0.76

Key observations:
• BIC outperforms AIC for model selection consistency (especially at larger

sample sizes)
• Performance deteriorates as p increases (search space grows exponentially)
• Larger sample sizes dramatically improve selection accuracy
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Simulation Study: Impact of Correlation Structure

• Simulation setup:
• Comparing uncorrelated vs. correlated (cor(Xj ,Xk) = 0.25) predictors
• True model: b1 = b2 = . . . = b5 = 0.25, all others b6 = . . . = bp = 0

Uncorrelated (BIC)
p

n 10 20 30
50 0.01 0.00 0.00
100 0.07 0.05 0.04
200 0.47 0.38 0.28
800 0.95 0.85 0.76

Correlated (BIC)
p

n 10 20 30
50 0.00 0.00 0.00
100 0.02 0.01 0.01
200 0.30 0.20 0.16
800 0.96 0.85 0.78

Key observations:

• Correlation among predictors makes model selection more challenging

• The effect is particularly pronounced at moderate sample sizes

• With very large samples, both scenarios perform similarly

• Multicollinearity remains a fundamental challenge for model selection
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Simulation Study: Impact of Effect Size

• Simulation setup:
• Uncorrelated covariates
• True model: b1 = b2 = . . . = b5 = β, all others b6 = . . . = bp = 0
• Varying effect size: β ∈ {0.25, 0.5, 1.0}

β = 0.25
p

n 10 20 30
50 0.01 0.00 0.00
100 0.07 0.05 0.04
200 0.47 0.38 0.28
800 0.95 0.85 0.76

β = 0.5
p

n 10 20 30
50 0.45 0.18 0.08
100 0.81 0.53 0.32
200 0.89 0.67 0.53
800 0.95 0.86 0.80

β = 1.0
p

n 10 20 30
50 0.70 0.32 0.13
100 0.81 0.57 0.35
200 0.88 0.69 0.54
800 0.95 0.86 0.78

Key observations:

• Larger effect sizes are much easier to detect, especially with small samples

• Even with small effects, large samples can achieve high accuracy

• Signal-to-noise ratio is a critical factor in model selection performance
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Simulation Study: Model Size Selection

• Simulation setup:
• Uncorrelated covariates
• True model size = 5 (b1 = b2 = . . . = b5 = 0.25, all others zero)

AIC: Average Model Size
p

n 10 20 30
50 4.21 7.07 11.77
100 5.15 7.22 9.67
200 5.74 7.52 9.52
800 5.76 7.35 9.14

BIC: Average Model Size
p

n 10 20 30
50 2.41 3.44 5.16
100 3.22 3.79 4.13
200 4.53 4.76 5.03
800 5.05 5.16 5.28

Key observations:
• AIC tends to select larger models (overfitting)
• BIC is more conservative and closer to the true model size (especially at large

n)
• With small samples, BIC tends to underfit (models too small)
• With large samples, BIC converges to the correct model size
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Post-Selection Inference: The Challenge

• The statistical issue: Standard inference is invalid after model selection
• Model selection procedures use the data to choose variables
• This invalidates the sampling distributions of test statistics
• Results in inflated significance and narrower confidence intervals than

warranted

• Analogy: The ”Instagram effect”
• Your friend’s Instagram feed shows only their best moments
• Comparing your average life to their curated feed is an unfair comparison
• Similarly, examining only the ”selected” variables gives a biased view

• Formal issue: Conditioning on selection events changes the sampling
distribution

• Variables are selected because they appear significant in the sample
• This creates a ”winner’s curse” - effects appear stronger than they truly are
• Standard p-values and confidence intervals no longer have their claimed

properties
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Post-Selection Inference: Valid Approaches

• Data splitting: The simplest valid approach
1 Split data into two independent parts: training and test sets (typically 50/50)
2 Use training data exclusively for model selection (exploratory analysis, stepwise

procedures, etc.)
3 Use test data exclusively for inference (hypothesis tests, confidence intervals)
4 Test set inference is valid because it’s independent of selection process

• Limitations of data splitting:
• Reduced power due to smaller sample size for both tasks
• Confidence intervals are wider due to using only n/2 observations
• Trade-off: Is eliminating irrelevant variables worth the cost of using half the

data?

• Advanced alternatives (beyond scope of this lecture):
• Selective inference methods that adjust for selection
• Multiple testing corrections
• Bootstrapping and subsampling approaches
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Key Takeaways

• Model selection is fundamentally about finding the optimal trade-off between
bias and variance

• Information criteria (AIC, BIC) provide theoretically justified approaches to
this trade-off

• The computational challenge grows exponentially with the number of
predictors (2p possible models)

• Branch and bound offers an efficient exact search strategy when feasible

• For high-dimensional problems (p ≫ 30), consider:
• Stepwise procedures (computationally efficient but potentially suboptimal)
• Regularization methods (lasso, elastic net)
• Domain knowledge to reduce the initial variable set

• Remember: The ”best” model depends on your objective (prediction vs.
inference)
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Key Takeaways

• Model selection fundamentals:
• Finding the optimal trade-off between bias and variance
• Balancing model complexity with generalization performance

• Selection methods:
• Exhaustive search with branch and bound (when computationally feasible)
• Forward/backward/stepwise procedures (efficient but potentially suboptimal)
• Regularization methods (lasso, ridge, elastic net) for high-dimensional

problems

• Performance factors:
• Sample size, number of predictors, effect size, and correlation structure
• BIC tends to select more parsimonious models than AIC
• BIC is consistent for model selection with large samples

• Valid inference:
• Standard inference is invalid after data-driven model selection
• Data splitting provides valid inference at the cost of reduced power
• The ”best” approach depends on your objective (prediction vs. inference)
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