Lecture 18: Dependent Errors & Mixed Effects Models
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Lecture Overview

® Key Topics

® Understanding dependency in error terms
Implications for statistical inference
Mixed effects models: theory and practice
Fixed vs. random effects: when to use each
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Linear Models: Key Assumptions

Standard linear model formulation:

P
Y: = bo + Z b Xk + €
k=1

Core assumptions:
e Linearity: E(Y; | Xi =x) = bo + >, bixk
¢ Independent Errors: ¢; is independent of €; for i # j

® Homoscedasticity: Error €; has constant variance and is independent of X;

Secondary assumption:
® Normality: Often assumed that ¢; ~ N(0, 02) for inference

Today’s focus: What happens when the independence assumption is violated?
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Group Discussion: Heteroskedasticity

When errors are heteroskedastic (unequal variance across observations):
® What examples have you encountered in your field?

® What statistical problems arise from heteroskedasticity?

® |nefficient parameter estimates
® |nvalid standard errors
® Incorrect confidence intervals and hypothesis tests
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Dependent Errors: The Problem



|dentifying Dependent Errors

Linear model with potentially dependent errors:

P
Y: = bo + Z bi Xk + €
k=1

Key violation we're examining today
Independent Errors Assumption: ¢; should be independent of ¢; for all i # j J

Dependency creates correlation structure: Cov(ej,¢;) # 0 for some i # j

Question: What real-world scenarios might create dependent errors?
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Example 1: Repeated Measures Design

Research Question: Effect of red wine consumption on cholesterol levels

Cholesterol; y = by + b;RedWine; x + €/ «

® Study design: Each participant (/) experiences all three treatments (k):

® No wine consumption
® Moderate wine consumption
® High wine consumption

® Dependency source: Error term can be decomposed as

€ix = Individual baseline; +  §; «
~—

Subject-specific effect Random noise

® QObservations from the same individual will have correlated errors!
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Example 2: Clustered Observations

Research Question: Impact of credit access on food insecurity in Africa

Foodlnsecurity; = by + by CreditAccess; + ¢;

® Data structure: Individuals (/) nested within geographical regions
® Dependency source: Error term includes regional factors

¢; = Regional factors (drought, conflict) + 0;
—

Shared across individuals in same region Individual variation

® QObservations from the same region will have correlated errors!
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Example 3: Hierarchical Data

Research Question: Relationship between study time and test scores

TestScore; = by + by StudyTime; + ¢

® Data structure: Students (/) nested within classrooms/teachers
® Dependency source: Error term includes teacher quality

€= Teacher quality + 0;
—_——

Shared across students with same teacher ~ Student-specific

® Students with the same teacher will have correlated errors!
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Why Dependent Errors Matter

Core issues with dependent errors
When errors are dependent, standard OLS procedures lead to: J

® |Incorrect standard errors

® Usually underestimated (sometimes dramatically)
® Leading to falsely narrow confidence intervals

® Invalid hypothesis tests

® Inflated Type | error rates (rejecting true nulls)
® Potentially misleading conclusions

® Loss of statistical efficiency
® Dependent observations contribute less information
® Equivalent to having a smaller effective sample size

Important distinction: Dependent predictors (X variables) are accounted for in
OLS. It's dependent errors that cause problems.
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Impact on Sampling Distribution: Independent Data

With independent data, the sample mean becomes a more precise estimate of the
true mean as sample size increases:
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Figure: With independent errors, standard error decreases with /n
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Impact on Sampling Distribution: Dependent Data

With completely dependent data, adding observations adds minimal information:
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Figure: With dependent errors, standard error decreases more slowly or not at all

Extreme case: When errors are perfectly correlated, SE(X) = o regardless of
sample size!
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Incorrect Inference with Dependent Errors

Sampling Distribution
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Figure: Type | error rates for nominal 5% test with dependent errors

® When setting o = .05, the null hypothesis is rejected &~ 16% of the time with
dependent errors

® Three times higher than the intended 5% rate!

® Systematic bias toward finding "significant” results that aren’t real
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Real-World Example: Longitudinal Data
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Figure: Repeated measurements on the same subjects (steers) over time (Lee et al.,
Frontiers in Bioscience-Landmark 2019)

® Measurements on the same subject are clearly correlated
® Treating these as independent would dramatically overstate confidence
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Real-World Example: Analysis Methods Matter
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Figure: Different statistical approaches yield different conclusions (Lee et al., Frontiers in
Bioscience-Landmark 2019)

® Independent analysis (left): Finds significant differences

® Accounting for dependence (right): More conservative, realistic assessment
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Mixed Effects Models: A Solution



Approaches to Handling Dependent Errors

Fixed Effects Approach Random Effects Approach
® Include dummy variables for each ® Model cluster effects as random
cluster/group variables
® No distributional assumptions ® Assumes distribution (typically
® Estimates unique effect for each normal)
cluster ® "Borrows strength” across clusters
® Uses only within-cluster variation ® Combines within and

between-cluster variation

Mixed Effects Models: Combine fixed effects (for parameters of interest) and
random effects (for sources of dependence)
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Fixed Effects Approach

For our red wine example:

Cholesterol; y = by + biRedWine;  + € «
= by + biRedWine; « + Individual baseline; + d; «

Eik

Fixed effects solution:

Cholesterol; x = by + biRedWine; 4 + Zngubjectj +dik
j=2
= by + biRedWine; x + gi + i«

® g is a fixed, unknown parameter for each individual
® No assumptions about the distribution of g;
® Effectively creates a separate intercept for each individual
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Conceptualizing Random Effects

Population Cholesterol
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Figure: Individual baselines vary around population mean

® Each individual's baseline cholesterol can be viewed as a draw from a

population distribution
® Instead of estimating each individual effect separately, we model the

distribution
® Key insight: The individuals in our study represent a sample from a larger

population
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Random Effects Approach
For our red wine example:

Cholesterol; y = by + bjRedWine; « + G; + d; «

® G; is a random variable (not a fixed parameter)

Typically assume G; ~ N(0,0%)

G; and G; are independent for i # j

G; is independent of predictors X;

® o2 represents the variance of individual baselines in the population

Terminology

bo and b; are fixed effects (parameters of interest)
G; is a random effect (accounts for dependence structure)
Together, they form a mixed effects model
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Applications of Random Effects

Group Discussion: What are examples in your research field where random
effects would be appropriate?

Biological Sciences Medical Research
® Genetic studies with family ® Patients within hospitals
clusters

® Repeated measures in clinical trials
® Repeated measurements on same

! ® Multicenter studies
organism .
& o ] ] Economics
® Plots within experimental fields e Individuals within households
Social Sciences T
s ® | ongitudinal income data
® Students within . e .
® Firms within industries
classrooms/schools

® \/oters within districts

® Repeated surveys of same
individuals
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Covariance Structure in Mixed Effects Models
For the model Y; = by + >, biXi x + Gz + i where Z; indicates cluster
membership:

Mean structure:

E(Yi | Xi,Z) =bo+ Y _ biXix
k

Covariance structure:

Cov(Y;, Y | X) = E[(Yi = E(Yi))(Y; — E(Y)))]
= E[(Gz +¢€i)(Gz + ¢;)]
= E(GZ,. sz) + E(Gzl.é"j) + E(szt’:‘;) + E(E,‘é‘j)
= E(GzGz)
_Jo% if Z = Z; (same cluster)
|0 if Z # Z; (different clusters)

Key insight: The model explicitly accounts for within-cluster correlation
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Visualizing Mixed Effects Models
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Figure: Random intercept model: Each cluster has its own intercept drawn from a

distribution
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Fixed vs. Random Effects: Which to Choose?

When to use Fixed Effects

® Primary interest is in specific
cluster differences

® Limited number of clusters
® Many observations per cluster

® Potential correlation between
cluster effects and predictors

® No need to generalize beyond
observed clusters

When to use Random Effects

Interest in population-level
inference

Many clusters, few observations
per cluster

Cluster effects independent of
predictors

Need for more statistical efficiency

Want to estimate variance
components

Need to predict effects for new
clusters

Hausman test: Formal test for deciding between fixed and random effects
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Advantages of Mixed Effects Models

® Improved precision: By imposing structure on cluster effects
(Gz ~ N(0,0%)), we gain statistical efficiency

® Valid inference: Accounts for dependence structure in the data

® Variance component estimation: Quantifies between-cluster vs.
within-cluster variability

® Flexible modeling: Can handle unbalanced designs, missing data

® Prediction for new clusters: Can predict outcomes for clusters not in
original data

® Longitudinal analysis: Natural framework for repeated measures data

Critical assumption: Random effects Gz are independent of predictors X
(If violated, can lead to biased fixed effect estimates)
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Computational Approaches

® Restricted Maximum Likelihood (REML): Standard approach for
estimating mixed models
® Developed by Charles Henderson at Cornell Animal Science (1948-1976)
® Reduces bias in variance component estimation compared to ML
® Adjusts for uncertainty in fixed effect estimation
® Henderson’s contributions:
® Developed Best Linear Unbiased Prediction (BLUP)
® Revolutionized animal breeding programs
® Methods now standard across many scientific fields

Figure: Charles Henderson, Cornell University
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Summary: Key Points

@ Dependent errors arise when observations share unmeasured factors
affecting the outcome

@ Ignoring dependence leads to invalid statistical inference (typically
overconfidence)
© Mixed effects models provide a flexible framework for handling dependent
data by:
® Modeling cluster-specific effects as random variables
® Explicitly accounting for within-cluster correlation
® Combining fixed effects (parameters of interest) with random effects (source
of dependence)
@ Choice between fixed and random effects depends on:
® Research question and inference goals
® Data structure and sample sizes
® Whether cluster effects correlate with predictors
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Appendix: Random Slopes Models

We can extend mixed models by allowing slopes to vary randomly too:

Yi=bo+ Y biXiw+ Gz + Y Hz Xk +ei
k K
® Gz ~ N(0,0%) is the random intercept
® Hz x ~ N(0,02) is the random slope for predictor k

® Can model correlation between random intercepts and slopes

Covariance structure:

o2 +O‘2X,'kX'k if Zi = Z;
COV(\/i,\/jX)—{OG H2LKS, IfZ#ZJ
i j

Implication: Correlation between observations from same cluster depends on
predictor values
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Appendix: Random Slopes Visualization
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Figure: Random slopes model: Both intercepts and slopes vary by cluster




Appendix: Simulation Results - Balanced Design

Yik =b1Xik1+ Gi+eix

Setup:
® 40 clusters, 2 observations per cluster (total n=80)
® True by =1
® G; ~ N(0,1) (random cluster effect)
® ¢« ~ N(0,1) (independent error)

Density
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Figure: Both fixed effects (SD=0.16) and random effects (SD=0.14) models produce
unbiased estimates with proper coverage of 95% Cls
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Appendix: Simulation Results - Few Large Clusters

Yik =b1Xik1+ Gi+eix
Setup:
® 5 clusters, 16 observations per cluster (total n=80)
True by =1
G; ~ N(0,1) (random cluster effect)
gik ~ N(0,1) (indebendent error)
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Figure: With few large clusters, both approaches perform similarly (SD=0.13) with
proper coverage
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Appendix: When Random Effects Assumptions Are
Violated

Setup:
20 clusters, 2 observations per cluster (total n=40)

Figure: Fixed effects model maintains proper coverage (95%), while random effects

True by =1

Yik = b1 Xik1+ Gi+eix

G; ~ N(0,1) but depends on X (violating key assumption)
ik ~ N(0,1) (indebendent error)
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model coverage drops to 88%
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Appendix: Clustered Standard Errors

Alternative approach: Use regular regression but adjust standard errors
® Key idea: Allow for arbitrary correlation structure within clusters

® Keep the same point estimates as OLS but correct the variance
® Sandwich formula:

Var(b | X) = o2(X'X)"H(X'WX)(X'X)
® W represents the error correlation structure
Advantages

® Robust to misspecification of correlation structure
® No assumption about random effects distribution

® Simple implementation in most statistical software

Disadvantages

® Requires large number of clusters (rule of thumb: 50+)

® |ess efficient than correctly specified mixed models

® Cannot estimate variance components
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Appendix: Cluster Correlation Structures

Common correlation structures for clustered data:

@ Compound symmetry (exchangeable):

1 ifi=j
W;j=(p ifi#jbutinsame cluster

0 if i,/ in different clusters
@ Autoregressive: For time series or spatial data
W, ; = pl™! for observations in same cluster
© Distance-based: For spatial data
Wi, = f(dist(/,J))

e.g., f(dist(i,))) = g ,J)z or f(dist(i, j)) = e~ dist(i)

Software implementation: Specify correlation structure in mixed models or use
cluster-robust standard errors
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