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Lecture Overview

• Key Topics
• Understanding dependency in error terms
• Implications for statistical inference
• Mixed effects models: theory and practice
• Fixed vs. random effects: when to use each
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Linear Models: Key Assumptions

Standard linear model formulation:

Yi = b0 +

p∑
k=1

bkXi,k + εi

Core assumptions:

• Linearity: E (Yi | Xi = x) = b0 +
∑

k bkxk
• Independent Errors: εi is independent of εj for i ̸= j

• Homoscedasticity: Error εi has constant variance and is independent of Xi

Secondary assumption:

• Normality: Often assumed that εi ∼ N(0, σ2) for inference

Today’s focus: What happens when the independence assumption is violated?
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Group Discussion: Heteroskedasticity

When errors are heteroskedastic (unequal variance across observations):

• What examples have you encountered in your field?

• What statistical problems arise from heteroskedasticity?
• Inefficient parameter estimates
• Invalid standard errors
• Incorrect confidence intervals and hypothesis tests
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Dependent Errors: The Problem
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Identifying Dependent Errors

Linear model with potentially dependent errors:

Yi = b0 +

p∑
k=1

bkXi,k + εi

Key violation we’re examining today

Independent Errors Assumption: εi should be independent of εj for all i ̸= j

Dependency creates correlation structure: Cov(εi , εj) ̸= 0 for some i ̸= j

Question: What real-world scenarios might create dependent errors?
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Example 1: Repeated Measures Design

Research Question: Effect of red wine consumption on cholesterol levels

Cholesteroli,k = b0 + b1RedWinei,k + εi,k

• Study design: Each participant (i) experiences all three treatments (k):
• No wine consumption
• Moderate wine consumption
• High wine consumption

• Dependency source: Error term can be decomposed as

εi,k = Individual baselinei︸ ︷︷ ︸
Subject-specific effect

+ δi,k︸︷︷︸
Random noise

• Observations from the same individual will have correlated errors!
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Example 2: Clustered Observations

Research Question: Impact of credit access on food insecurity in Africa

FoodInsecurityi = b0 + b1CreditAccessi + εi

• Data structure: Individuals (i) nested within geographical regions

• Dependency source: Error term includes regional factors

εi = Regional factors (drought, conflict)︸ ︷︷ ︸
Shared across individuals in same region

+ δi︸︷︷︸
Individual variation

• Observations from the same region will have correlated errors!

BTRY 6020 Spring 2025 8 / 27



Example 3: Hierarchical Data

Research Question: Relationship between study time and test scores

TestScorei = b0 + b1StudyTimei + εi

• Data structure: Students (i) nested within classrooms/teachers

• Dependency source: Error term includes teacher quality

εi = Teacher quality︸ ︷︷ ︸
Shared across students with same teacher

+ δi︸︷︷︸
Student-specific

• Students with the same teacher will have correlated errors!
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Why Dependent Errors Matter

Core issues with dependent errors

When errors are dependent, standard OLS procedures lead to:

• Incorrect standard errors
• Usually underestimated (sometimes dramatically)
• Leading to falsely narrow confidence intervals

• Invalid hypothesis tests
• Inflated Type I error rates (rejecting true nulls)
• Potentially misleading conclusions

• Loss of statistical efficiency
• Dependent observations contribute less information
• Equivalent to having a smaller effective sample size

Important distinction: Dependent predictors (X variables) are accounted for in
OLS. It’s dependent errors that cause problems.
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Impact on Sampling Distribution: Independent Data

With independent data, the sample mean becomes a more precise estimate of the
true mean as sample size increases:

Figure: With independent errors, standard error decreases with
√
n

Key property: SE(X̄ ) = σ√
n
when observations are independent

BTRY 6020 Spring 2025 11 / 27



Impact on Sampling Distribution: Dependent Data

With completely dependent data, adding observations adds minimal information:

Figure: With dependent errors, standard error decreases more slowly or not at all

Extreme case: When errors are perfectly correlated, SE(X̄ ) = σ regardless of
sample size!
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Incorrect Inference with Dependent Errors

Figure: Type I error rates for nominal 5% test with dependent errors

• When setting α = .05, the null hypothesis is rejected ≈ 16% of the time with
dependent errors

• Three times higher than the intended 5% rate!
• Systematic bias toward finding ”significant” results that aren’t real
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Real-World Example: Longitudinal Data

Figure: Repeated measurements on the same subjects (steers) over time (Lee et al.,
Frontiers in Bioscience-Landmark 2019)

• Measurements on the same subject are clearly correlated

• Treating these as independent would dramatically overstate confidence
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Real-World Example: Analysis Methods Matter

Figure: Different statistical approaches yield different conclusions (Lee et al., Frontiers in
Bioscience-Landmark 2019)

• Independent analysis (left): Finds significant differences

• Accounting for dependence (right): More conservative, realistic assessment
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Mixed Effects Models: A Solution
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Approaches to Handling Dependent Errors

Fixed Effects Approach

• Include dummy variables for each
cluster/group

• No distributional assumptions

• Estimates unique effect for each
cluster

• Uses only within-cluster variation

Random Effects Approach

• Model cluster effects as random
variables

• Assumes distribution (typically
normal)

• ”Borrows strength” across clusters

• Combines within and
between-cluster variation

Mixed Effects Models: Combine fixed effects (for parameters of interest) and
random effects (for sources of dependence)
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Fixed Effects Approach

For our red wine example:

Cholesteroli,k = b0 + b1RedWinei,k + εi,k

= b0 + b1RedWinei,k + Individual baselinei + δi,k︸ ︷︷ ︸
εi,k

Fixed effects solution:

Cholesteroli,k = b0 + b1RedWinei,k +
n∑

j=2

gjSubjectj + δi,k

= b0 + b1RedWinei,k + gi + δi,k

• gi is a fixed, unknown parameter for each individual

• No assumptions about the distribution of gi
• Effectively creates a separate intercept for each individual
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Conceptualizing Random Effects

Figure: Individual baselines vary around population mean

• Each individual’s baseline cholesterol can be viewed as a draw from a
population distribution

• Instead of estimating each individual effect separately, we model the
distribution

• Key insight: The individuals in our study represent a sample from a larger
population
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Random Effects Approach

For our red wine example:

Cholesteroli,k = b0 + b1RedWinei,k + Gi + δi,k

• Gi is a random variable (not a fixed parameter)

• Typically assume Gi ∼ N(0, σ2
G )

• Gi and Gj are independent for i ̸= j

• Gi is independent of predictors Xi

• σ2
G represents the variance of individual baselines in the population

Terminology

b0 and b1 are fixed effects (parameters of interest)
Gi is a random effect (accounts for dependence structure)
Together, they form a mixed effects model
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Applications of Random Effects

Group Discussion: What are examples in your research field where random
effects would be appropriate?
Biological Sciences

• Genetic studies with family
clusters

• Repeated measurements on same
organism

• Plots within experimental fields

Social Sciences

• Students within
classrooms/schools

• Voters within districts

• Repeated surveys of same
individuals

Medical Research

• Patients within hospitals

• Repeated measures in clinical trials

• Multicenter studies

Economics

• Individuals within households

• Longitudinal income data

• Firms within industries
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Covariance Structure in Mixed Effects Models

For the model Yi = b0 +
∑

k bkXi,k + GZi + εi where Zi indicates cluster
membership:

Mean structure:
E (Yi | Xi ,Zi ) = b0 +

∑
k

bkXi,k

Covariance structure:

Cov(Yi ,Yj | X) = E [(Yi − E (Yi ))(Yj − E (Yj))]

= E [(GZi + εi )(GZj + εj)]

= E (GZiGZj ) + E (GZi εj) + E (GZj εi ) + E (εiεj)

= E (GZiGZj )

=

{
σ2
G if Zi = Zj (same cluster)

0 if Zi ̸= Zj (different clusters)

Key insight: The model explicitly accounts for within-cluster correlation
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Visualizing Mixed Effects Models

Figure: Random intercept model: Each cluster has its own intercept drawn from a
distribution

• Each line represents a different cluster (e.g., individual)
• Lines have the same slope but different intercepts
• Intercepts are modeled as draws from a normal distribution
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Fixed vs. Random Effects: Which to Choose?

When to use Fixed Effects

• Primary interest is in specific
cluster differences

• Limited number of clusters

• Many observations per cluster

• Potential correlation between
cluster effects and predictors

• No need to generalize beyond
observed clusters

When to use Random Effects

• Interest in population-level
inference

• Many clusters, few observations
per cluster

• Cluster effects independent of
predictors

• Need for more statistical efficiency

• Want to estimate variance
components

• Need to predict effects for new
clusters

Hausman test: Formal test for deciding between fixed and random effects
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Advantages of Mixed Effects Models

• Improved precision: By imposing structure on cluster effects
(GZ ∼ N(0, σ2

G )), we gain statistical efficiency

• Valid inference: Accounts for dependence structure in the data

• Variance component estimation: Quantifies between-cluster vs.
within-cluster variability

• Flexible modeling: Can handle unbalanced designs, missing data

• Prediction for new clusters: Can predict outcomes for clusters not in
original data

• Longitudinal analysis: Natural framework for repeated measures data

Critical assumption: Random effects GZ are independent of predictors X
(If violated, can lead to biased fixed effect estimates)
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Computational Approaches

• Restricted Maximum Likelihood (REML): Standard approach for
estimating mixed models

• Developed by Charles Henderson at Cornell Animal Science (1948-1976)
• Reduces bias in variance component estimation compared to ML
• Adjusts for uncertainty in fixed effect estimation

• Henderson’s contributions:
• Developed Best Linear Unbiased Prediction (BLUP)
• Revolutionized animal breeding programs
• Methods now standard across many scientific fields

Figure: Charles Henderson, Cornell University
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Summary: Key Points

1 Dependent errors arise when observations share unmeasured factors
affecting the outcome

2 Ignoring dependence leads to invalid statistical inference (typically
overconfidence)

3 Mixed effects models provide a flexible framework for handling dependent
data by:

• Modeling cluster-specific effects as random variables
• Explicitly accounting for within-cluster correlation
• Combining fixed effects (parameters of interest) with random effects (source

of dependence)

4 Choice between fixed and random effects depends on:
• Research question and inference goals
• Data structure and sample sizes
• Whether cluster effects correlate with predictors
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Appendix: Random Slopes Models

We can extend mixed models by allowing slopes to vary randomly too:

Yi = b0 +
∑
k

bkXi,k + GZi +
∑
k

HZi ,kXi,k + εi

• GZi ∼ N(0, σ2
G ) is the random intercept

• HZi ,k ∼ N(0, σ2
H) is the random slope for predictor k

• Can model correlation between random intercepts and slopes

Covariance structure:

Cov(Yi ,Yj | X) =

{
σ2
G + σ2

Hxi,kxj,k if Zi = Zj

0 if Zi ̸= Zj

Implication: Correlation between observations from same cluster depends on
predictor values
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Appendix: Random Slopes Visualization

Figure: Random slopes model: Both intercepts and slopes vary by cluster

• Each line represents a different cluster
• Both intercepts AND slopes vary across clusters
• Slopes and intercepts follow a multivariate normal distribution
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Appendix: Simulation Results - Balanced Design

Yi,k = b1Xi,k,1 + Gi + εi,k

Setup:
• 40 clusters, 2 observations per cluster (total n=80)
• True b1 = 1
• Gi ∼ N(0, 1) (random cluster effect)
• εi,k ∼ N(0, 1) (independent error)

Figure: Both fixed effects (SD=0.16) and random effects (SD=0.14) models produce
unbiased estimates with proper coverage of 95% CIs
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Appendix: Simulation Results - Few Large Clusters

Yi,k = b1Xi,k,1 + Gi + εi,k

Setup:
• 5 clusters, 16 observations per cluster (total n=80)
• True b1 = 1
• Gi ∼ N(0, 1) (random cluster effect)
• εi,k ∼ N(0, 1) (independent error)

Figure: With few large clusters, both approaches perform similarly (SD=0.13) with
proper coverage
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Appendix: When Random Effects Assumptions Are
Violated

Yi,k = b1Xi,k,1 + Gi + εi,k

Setup:
• 20 clusters, 2 observations per cluster (total n=40)
• True b1 = 1
• Gi ∼ N(0, 1) but depends on X (violating key assumption)
• εi,k ∼ N(0, 1) (independent error)

Figure: Fixed effects model maintains proper coverage (95%), while random effects
model coverage drops to 88%
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Appendix: Clustered Standard Errors

Alternative approach: Use regular regression but adjust standard errors
• Key idea: Allow for arbitrary correlation structure within clusters
• Keep the same point estimates as OLS but correct the variance
• Sandwich formula:

Var(b̂ | X) = σ2(X′X)−1(X′WX)(X′X)−1

• W represents the error correlation structure

Advantages
• Robust to misspecification of correlation structure

• No assumption about random effects distribution

• Simple implementation in most statistical software

Disadvantages
• Requires large number of clusters (rule of thumb: 50+)

• Less efficient than correctly specified mixed models

• Cannot estimate variance components
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Appendix: Cluster Correlation Structures

Common correlation structures for clustered data:

1 Compound symmetry (exchangeable):

Wi,j =


1 if i = j

ρ if i ̸= j but in same cluster

0 if i , j in different clusters

2 Autoregressive: For time series or spatial data

Wi,j = ρ|i−j| for observations in same cluster

3 Distance-based: For spatial data

Wi,j = f (dist(i , j))

e.g., f (dist(i , j)) = 1
dist(i,j)2 or f (dist(i , j)) = e−λ·dist(i,j)

Software implementation: Specify correlation structure in mixed models or use
cluster-robust standard errors
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