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Logistics

• Starting Module 6 today on generalized linear models

• Module 5 assessment due Wed Apr 22
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Recap
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BTRY 6020 so far . . .

• So far we’ve learned a lot about linear models

• Module 1: simple linear regression with 1 covariate:

E (Y | X = x) = b0 + bx or Yi = b0 + bXi + εi

• We can compute b̂0 and b̂1 to estimate b0 and b1 by minimizing

RSS =
∑
i

(yi − ŷi )
2 where ŷi = b̂0 + b̂1xi
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BTRY 6020 so far . . .

• Module 2: extended the framework to include multiple covariates

E (Y | X = x) = b0 +

p∑
k=1

bpxp or Yi = b0 +

p∑
k=1

bkXi,k + εi

• Now, bk represents the associated difference in the expected value of Y when
comparing two observations who’s Xk values differ by 1 unit, but all other
covariates are the same

• Can flexibly model E (Yi | Xi = x), the conditional mean of Yi given Xi

• Can control for other variables
• Can include categorical variables as dummy terms
• Can include polynomial terms
• Can use transformations of the covariates and the dependent variable
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Housing example:
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Testing in linear models

Module 3: Hypothesis Testing

• Use a T-test to test a single coefficient

• Use a F-test to test multiple coefficients simultaneously

Module 4: How can we still do testing when the assumptions are violated

• When the data generating procedure is heteroscedastic

• Bootstrap can be a powerful tool for estimating the standard errors that
doesn’t require as many assumptions

• When different observations may not be independent of each other, then use
fixed effects or random effects

Module 5: How to choose which covariates to include when you have many to
consider
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One major restriction

Up until now, we’ve always assumed that our dependent variable Y is continuous
(or at least close enough that we can model it that way)

How can we model data that is discrete or count data?
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Modeling discrete data
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Example: Modeling NFL field goals

In American football, if you can kick the football through the field goal you get
three points
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Example: Modeling NFL field goals

If we regress the outcome of the kick where Miss = 0 and Make = 1 onto

• Distance (yards)

• Wind Speed (mph)

• Raining = 1, Dry = 0

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.3873 0.0333 41.62 0.0000

distance -0.0136 0.0008 -17.65 0.0000
Wind Speed -0.0042 0.0016 -2.57 0.0103

Rain -0.0509 0.0347 -1.47 0.1419
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Example: Modeling NFL field goals

If a kick is from 35 yards, the wind speed is 10 mph, and it is raining, then we
would predict that

Yi = 1.388− .014× (35)− .004× (10)− .051(1) = .877

What model are we actually assuming?

Yi = b0 +

p∑
k=1

bkXk + εi

The range of possible εi depends on b0 +
∑p

k=1 bkXk
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Bernoulli Distribution

Bernoulli Distribution is used to model binary variables

• Suppose a random variable Y has outcomes {0, 1}
• We only need to specify the parameter θ = P(Y = 1) because
P(Y = 0) = 1− θ

• The parameter 0 ≤ θ ≤ 1

• For Y , we have E (Y ) = θ and var(Y ) = θ(1− θ)
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Example: Modeling NFL field goals

We can estimate the probability of success as a linear function of covariates

P(Y = 1 | X = x) = θ(x) = E (Y | X = x) = b0 +

p∑
k=1

bkxk

If a kick is from 35 yards, the wind speed is 10 mph, and it is raining, then the
probability of success is

θ(x) = 1.388− .014× (35)− .004× (10)− .051(1) = .877

If a kick is from 10 yards, the wind speed is 5 mph, and it is not raining, then the
probability of success is

θ(x) = 1.388− .014× (10)− .004× (5)− .051(0) = 1.08
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Modeling the probability of success

• We want a function who’s input (b0 +
∑p

k=1 bkxk) can be any value
(−∞,∞), but the output is (0, 1)

• We use the logistic function

s(z) =
exp(z)

1 + exp(z)

• When z is very small (i.e., very negative), the numerator is very close to 0, so
s(z) ≈ 0

• When z is very large, the numerator and the denominator are both very large
so s(z) ≈ 1
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Modeling the probability of success

So we can fit a model such that

P(Y = 1 | X = x) = θ(x) = E (Y | X = x) =
exp(b0 +

∑p
k=1 bkxk)

1 + exp(b0 +
∑p

k=1 bkxk)

• Stays between (0, 1)
• Diminishing returns
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Logistic Regression

This is equivalent to

log

(
θ(x)

1− θ(x)

)
= b0 +

p∑
k=1

bkxk

• The function log(θ/(1− θ)) is called the logit function

• This model is called Logistic regression

• θ/(1− θ) are called the odds

• Log odds are a linear function of the covariates
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Logistic Regression

This is equivalent to

log

(
θ(x)

1− θ(x)

)
= b0 +

p∑
k=1

bkxk

• The function log(θ/(1− θ)) is called the logit function

• This model is called Logistic regression

• θ/(1− θ) are called the odds; can range from (0,∞)

• Log odds are a linear function of the covariates; can range from (−∞,∞)
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Logistic Regression

log

(
θ(x)

1− θ(x)

)
= b0 +

p∑
k=1

bkxk

• Suppose we set all xk = 0

log

(
θ(0)

1− θ(0)

)
= b0

• The intercept is the value of the log-odds when all covariates are 0

• May not be meaningful if covariates can never be 0
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Logistic Regression

log

(
θ(x)

1− θ(x)

)
= b0 +

p∑
k=1

bkxk

• Suppose x1 and x2 are individuals whose covariates values which are the all
the same, except that x2,p = x1,p + 1

log

(
θ(x2)

1− θ(x2)

)
− log

(
θ(x1)

1− θ(x1)

)
= b0 +

p−1∑
k=1

bkx2,kb0 + bpx2,p − b0 −
p−1∑
k=1

bkx1,k − bpx1,p

= bp(x2,p − x1,p) = bp
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Logistic Regression

By properties of the log

log

(
θ(x2)

1− θ(x2)

)
− log

(
θ(x1)

1− θ(x1)

)
= log

(
θ(x2)/(1− θ(x2))

θ(x1)/(1− θ(x1))

)
so putting everything together, we have

θ(x2)/(1− θ(x2))

θ(x1)/(1− θ(x1))
= exp(bp) (1)

• Odds ratio: θ(x2)/(1−θ(x2))
θ(x1)/(1−θ(x1))

• Interpretation: If observation 1 and observation 2 have all the same
covariates, but x2,p = x1,p + 1, then the odds for Y2 are exp(bp) times larger
(i.e., multiplicative) than the odds for Y1
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Odds and Odds ratios

The odds and odds ratios are a bit difficult to interpret concretely
• When θ is very small, the odds are close to the probability of success

θ

1− θ
≈ θ

1
= θ

• Can always map the odds back to the probability θ = odds
1+odds

• Can always map the log-odds back to the probability θ = exp(log odds)
1+exp(log odds)

• Odds and probability always move in the same direction (i.e.,
increasing/decreasing one always increases/decreases the other)
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Odds and Odds ratios

The odds and odds ratios are a bit difficult to interpret concretely

• When the odds ratio (often abbreviated as OR) of Y2 vs Y1 is > 1, then
P(Y2 = 1) > P(Y1 = 1)

• When OR = 1 then P(Y2 = 1) = P(Y1 = 1)

• When OR < 1 then P(Y2 = 1) < P(Y1 = 1)

When Observation 2 and Observation 1 have all the same covariates except,
x2,p = x1,p + 1, then the odds ratio of Y2 vs Y1 is exp(bp)

• When bp > 0 then OR > 1

• When bp = 0 then OR = 1

• When bp < 0 then OR < 1

so the coefficients sign (positive or negative) indicates whether larger values of Xp

are associated with a higher probability of success
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NFL Field Goals

We use logistic regression to model the log odds of a successful kick as a linear
function of

• Distance (yards)

• Wind Speed (mph)

• Raining = 1, Dry = 0

Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.8185 0.3823 17.84 0.0000
Distance -0.1174 0.0079 -14.91 0.0000

Wind Speed -0.0355 0.0128 -2.77 0.0056
Rain -0.4385 0.2613 -1.68 0.0933
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NFL Field Goals

Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.8185 0.3823 17.84 0.0000
Distance -0.1174 0.0079 -14.91 0.0000

Wind Speed -0.0355 0.0128 -2.77 0.0056
Rain -0.4385 0.2613 -1.68 0.0933

• Considering two attempts with the same rain and wind conditions, the odds
of a successful attempt of a kick are exp(−.1174) = .889 of the odds of a
kick which is 1 yard longer

• Considering two attempts with the same distance and wind speed, when it is
raining, the odds of a successful attempt are exp(−.439) = .644 of the odds
when it is not raining
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NFL Field Goals

If a kick is from 35 yards, the wind speed is 10 mph, and it is not raining, then we
estimate that

log

(
θ(x)

1− θ(x)

)
= 6.819− .117× (35)− .036× (10)− .439(0) = 2.364

θ(x)

1− θ(x)
= exp(2.364) = 10.6334

P(Success) = θ(x) =
exp(2.364)

1 + exp(2.364)
= .914

If a kick is from 36 yards, the wind speed is 10 mph, and it is not raining, then we
estimate that

log

(
θ(x)

1− θ(x)

)
= 6.819− .117× (36)− .036× (10)− .439(0) = 2.247

θ(x)

1− θ(x)
= exp(2.247) = 9.459 = exp(2.364)× .889

P(Success) = θ(x) =
exp(2.247)

1 + exp(2.247)
= 0.904
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NFL Field Goals

If a kick is from 35 yards, the wind speed is 10 mph, and it is not raining, then we
estimate that

log

(
θ(x)

1− θ(x)

)
= 6.819− .117× (35)− .036× (10)− .439(0) = 2.364

θ(x)

1− θ(x)
= exp(2.364) = 10.6334

P(Success) = θ(x) =
exp(2.364)

1 + exp(2.364)
= .914

If a kick is from 35 yards, the wind speed is 10 mph, and it is raining, then we estimate
that

log

(
θ(x)

1− θ(x)

)
= 6.819− .117× (35)− .036× (10)− .439(1) = 1.935

θ(x)

1− θ(x)
= exp(1.935) = 6.855 = exp(2.364)× .644

P(Success) = θ(x) =
exp(1.935)

1 + exp(1.935)
= .873
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Wrap-up

• Modeling discrete data requires different approach

• Model parameter (or transformation of parameter) used linear model

• For binary data, we model log-odds

• Interpret model using odds ratio
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