Lecture 19: Logistic Regression
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Logistics

® Starting Module 6 today on generalized linear models
® Module 5 assessment due Wed Apr 22
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BTRY 6020 so far ...

® So far we've learned a lot about linear models

® Module 1: simple linear regression with 1 covariate:
E(Y | X =x)=by+ bx or Y; = by + bX; + ¢;
® We can compute BO and b; to estimate by and b; by minimizing

RSS = (yi—9)*  where g =by+bx
i
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BTRY 6020 so far ...

® Module 2: extended the framework to include multiple covariates

p p
E(Y[X=x)=b+ Y byx, or Yi=bo+ > biXik+ei
k=1 k=1

® Now, by represents the associated difference in the expected value of Y when
comparing two observations who's Xj values differ by 1 unit, but all other
covariates are the same
® Can flexibly model E(Y; | X; = x), the conditional mean of Y; given X;
® Can control for other variables
® Can include categorical variables as dummy terms

® Can include polynomial terms
® Can use transformations of the covariates and the dependent variable
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Housing example:

® Module 2: extended the framework to include multiple covariates

p p
E(Y[X=x)=b+ Y byx, or Yi=bo+ > biXik+ei
k=1 k=1

® Now, by represents the associated difference in the expected value of Y when
comparing two observations who's Xj values differ by 1 unit, but all other
covariates are the same
® Can flexibly model E(Y; | X; = x), the conditional mean of Y; given X;
® Can control for other variables
® Can include categorical variables as dummy terms

® Can include polynomial terms
® Can use transformations of the covariates and the dependent variable
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Testing in linear models

Module 3: Hypothesis Testing
® Use a T-test to test a single coefficient

® Use a F-test to test multiple coefficients simultaneously

Module 4: How can we still do testing when the assumptions are violated
® When the data generating procedure is heteroscedastic

® Bootstrap can be a powerful tool for estimating the standard errors that
doesn't require as many assumptions

® When different observations may not be independent of each other, then use
fixed effects or random effects

Module 5: How to choose which covariates to include when you have many to
consider
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One major restriction

Up until now, we've always assumed that our dependent variable Y is continuous
(or at least close enough that we can model it that way)
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One major restriction

Up until now, we've always assumed that our dependent variable Y is continuous
(or at least close enough that we can model it that way)

How can we model data that is discrete or count data?
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Modeling discrete data
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Example: Modeling NFL field goals

In American football, if you can kick the football through the field goal you get
three points
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Example: Modeling NFL field goals

In American football, if you can kick the football through the field goal you get
three points
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Example: Modeling NFL field goals

In American football, if you can kick the football through the field goal you get

three points

NFL Field Goals (2018-22)
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Example: Modeling NFL field goals

In American football, if you can kick the football through the field goal you get

three points

NFL Field Goals (2018-22)
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Example: Modeling NFL field goals

If we regress the outcome of the kick where Miss = 0 and Make = 1 onto
® Distance (yards)
® Wind Speed (mph)
® Raining =1, Dry =0

Estimate Std. Error tvalue Pr(>]t|)

(Intercept) 1.3873 0.0333  41.62  0.0000
distance  -0.0136 0.0008 -17.65  0.0000
Wind Speed  -0.0042 0.0016  -2.57  0.0103
Rain  -0.0509 0.0347 -1.47 0.1419
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Example: Modeling NFL field goals

If a kick is from 35 yards, the wind speed is 10 mph, and it is raining, then we
would predict that

Y; = 1.388 — .014 x (35) — .004 x (10) — .051(1) = .877
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Example: Modeling NFL field goals

If a kick is from 35 yards, the wind speed is 10 mph, and it is raining, then we
would predict that

Y; = 1.388 — .014 x (35) — .004 x (10) — .051(1) = .877
What model are we actually assuming?

P
Y= b0+zbkxk+5i
k=1

The range of possible ¢; depends on by + Zizl b X
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Bernoulli Distribution

Bernoulli Distribution is used to model binary variables
® Suppose a random variable Y has outcomes {0,1}

® We only need to specify the parameter § = P(Y = 1) because
P(Y=0)=1—0

® The parameter 0 <9 <1

® For Y, we have E(Y) =6 and var(Y) = 6(1 —6)
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Example: Modeling NFL field goals
We can estimate the probability of success as a linear function of covariates

P
P(Y=1|X=x)=0(x)=E(Y|X=x)=by+ Y bex
k=1

If a kick is from 35 yards, the wind speed is 10 mph, and it is raining, then the
probability of success is

f(x) = 1.388 — .014 x (35) — .004 x (10) — .051(1) = .877
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Example: Modeling NFL field goals
We can estimate the probability of success as a linear function of covariates

P
P(Y=1|X=x)=0(x)=E(Y|X=x)=by+ Y bex
k=1

If a kick is from 35 yards, the wind speed is 10 mph, and it is raining, then the
probability of success is

f(x) = 1.388 — .014 x (35) — .004 x (10) — .051(1) = .877
If a kick is from 10 yards, the wind speed is 5 mph, and it is not raining, then the
probability of success is

0(x) = 1.388 — .014 x (10) — .004 x (5) — .051(0) = 1.08
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Modeling the probability of success

® We want a function who's input (by + > %_; bkxx) can be any value
(—00,0), but the output is (0,1)
® We use the logistic function

exp(z)
s(z) = ————
(2) 1+ exp(2)
® When z is very small (i.e., very negative), the numerator is very close to 0, so
s(z) =0
® When z is very large, the numerator and the denominator are both very large
sos(z) =1

Exponential Function
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Modeling the probability of success

So we can fit a model such that

exp(bo + > 7_1 bkxx)
PIY =1 X=x) =009 = E(V | X=x) = 3= 0 =S 0
k=1

® Stays between (0, 1)
® Diminishing returns

Sigmoid Function
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Logistic Regression

This is equivalent to

Iog<10( x) >—bo+2bkxk

The function log(8/(1 — )) is called the logit function
This model is called Logistic regression

0/(1 — 0) are called the odds

Log odds are a linear function of the covariates
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Logistic Regression

This is equivalent to

log <1f(—;§zx)> = by + kZ: brexi

The function log(8/(1 — )) is called the logit function
This model is called Logistic regression

0/(1 — 0) are called the odds; can range from (0, c0)

Log odds are a linear function of the covariates; can range from (—oo, 00)
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Logistic Regression

0(x
Iog<1_(0 ) —bo—i—Zbkxk

® Suppose we set all x, =0

® The intercept is the value of the log-odds when all covariates are 0

® May not be meaningful if covariates can never be 0
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Logistic Regression

Iog<1 0(x) ) —bo—i—Zbkxk

® Suppose x3 and x are individuals whose covariates values which are the all
the same, except that xp , = x1,p + 1

o (i) o (i)

p—1 p—1
= by + Z ka2)kbo + pr2,p — by — Z bkxlyk — bPXLP
k=1 k=1

= bp(x2,p — X1,p) = bp
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Logistic Regression
By properties of the log
0(x2) O(x1) \ _ . (00x2)/(1 ~6(x2))
ot (12 hm) o8 (2500 ) =% (i)

so putting everything together, we have

) /(1 ()
6c) /(1= O(x)) ~ =P )
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Logistic Regression

By properties of the log

o (208) g (250 ) o (A1~ o

so putting everything together, we have

Bc)/(1— 0a)) P )

* Odds ratio: grelii=gbel)

® |nterpretation: If observation 1 and observation 2 have all the same
covariates, but xz,, = x1,, + 1, then the odds for Y; are exp(b,) times larger
(i.e., multiplicative) than the odds for Y;
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Odds and Odds ratios

The odds and odds ratios are a bit difficult to interpret concretely

® When 6 is very small, the odds are close to the probability of success
0 0
)
1-60 1

® Can always map the odds back to the probability 6 = —lj’r‘i‘ézs

exp(log odds)

® Can always map the log-odds back to the probability 6 = Trexp(log 0dds)

® Odds and probability always move in the same direction (i.e.,
increasing/decreasing one always increases/decreases the other)
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Odds and Odds ratios

The odds and odds ratios are a bit difficult to interpret concretely
® When the odds ratio (often abbreviated as OR) of Y5 vs Y7 is > 1, then
P(Y2=1)> P(Y1=1)
® When OR =1then P(Y,=1)=P(Y1 =1)
® When OR < 1then P(Y2=1) < P(Y1=1)
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Odds and Odds ratios

The odds and odds ratios are a bit difficult to interpret concretely
® When the odds ratio (often abbreviated as OR) of Y5 vs Y7 is > 1, then
P(Y2=1)> P(Y1=1)
® When OR =1then P(Y,=1)=P(Y1 =1)
® When OR < 1then P(Y2=1) < P(Y1=1)

When Observation 2 and Observation 1 have all the same covariates except,
X2.p = X1,p + 1, then the odds ratio of Y> vs Y7 is exp(b,)

® When b, > 0 then OR >1
® When b, =0 then OR =1
® When b, <0 then OR < 1

so the coefficients sign (positive or negative) indicates whether larger values of X,
are associated with a higher probability of success
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NFL Field Goals

We use logistic regression to model the log odds of a successful kick as a linear
function of

® Distance (yards)
® Wind Speed (mph)
® Raining =1, Dry =0

Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.8185 0.3823  17.84  0.0000
Distance  -0.1174 0.0079 -14.01 0.0000
Wind Speed  -0.0355 0.0128 -2.77 0.0056
Rain  -0.4385 0.2613 -1.68 0.0933
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NFL Field Goals

Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.8185 0.3823  17.84 0.0000
Distance  -0.1174 0.0079 -14.01 0.0000
Wind Speed  -0.0355 0.0128 -2.77 0.0056
Rain  -0.4385 0.2613 -1.68 0.0933

® Considering two attempts with the same rain and wind conditions, the odds
of a successful attempt of a kick are exp(—.1174) = .889 of the odds of a
kick which is 1 yard longer

® Considering two attempts with the same distance and wind speed, when it is
raining, the odds of a successful attempt are exp(—.439) = .644 of the odds
when it is not raining
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NFL Field Goals

If a kick is from 35 yards, the wind speed is 10 mph, and it is not raining, then we
estimate that

log (1 ﬁb@?x)) = 6.819 — .117 x (35) — .036 x (10) — .439(0) = 2.364

0(x)
1-0(x)

= exp(2.364) = 10.6334

P(Success) = 0(x) = exp(2.364)

— SPLEBY) 914
1+ exp(2.364)

If a kick is from 36 yards, the wind speed is 10 mph, and it is not raining, then we
estimate that

log (1 f(zzx)> = 6.819 — .117 x (36) — .036 x (10) — .439(0) = 2.247

0(x)
1-6(x)

= exp(2.247) = 9.459 = exp(2.364) x .889

exp(2.247)

P(Success) = 6(x) = 1+ exp(2.247)

= 0.904
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NFL Field Goals

If a kick is from 35 yards, the wind speed is 10 mph, and it is not raining, then we
estimate that

log (1 ﬁ%%q) = 6.819 — .117 x (35) — .036 x (10) — .439(0) = 2.364

0(x)
1-0(x)

= exp(2.364) = 10.6334

P(Success) = 0(x) = exp(2.364)

= ————==.914
1+ exp(2.364)

If a kick is from 35 yards, the wind speed is 10 mph, and it is raining, then we estimate
that

log (1 f(gzx)> = 6.819 — .117 x (35) — .036 x (10) — .439(1) = 1.935

1 % = exp(1.935) = 6.855 = exp(2.364) x .644
exp(1.935)
P =) = T (1.035)
(Success) = 6(x) 1+ exp(1.935) 873
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Wrap-up

Modeling discrete data requires different approach

Model parameter (or transformation of parameter) used linear model

For binary data, we model log-odds
® Interpret model using odds ratio
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