Lecture 2: Correlation

Module 1, part 1

Spring 2025

Logistics

- Please take a look at the syllabus if you haven't already
- Population, data, and statistics
- Start Module 1 (3 lectures total)
- Correlation

Sample data vs Population distribution

Summarizing a data set

Suppose we observe *n* numbers, $x_1, x_2, ..., x_n$. How might we summarize this set of number succinctly?

Summarizing a data set

Suppose we observe *n* numbers, $x_1, x_2, ..., x_n$. How might we summarize this set of number succinctly?

• Mean:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \ldots + x_n)$$

- Median: "middle value"
- Mode: most frequent value

We can think about the mean through a different lens...

- Let \hat{b}_0 be a "candidate"
- The residual for the *i*th observation is $e_i = x_i \hat{b}_0$

We can think about the mean through a different lens...

- Let \hat{b}_0 be a "candidate"
- The residual for the *i*th observation is $e_i = x_i \hat{b}_0$

Suppose we use the *residual sum of squares* to define how well a number "summarizes" a set:

$$RSS(\hat{b}_0) = \sum_i |x_i - \hat{b}_0|^2 = \sum_i |e_i|^2$$

How do we select the best b_0 ?

We can think about the mean through a different lens...

- Let \hat{b}_0 be a "candidate"
- The residual for the *i*th observation is $e_i = x_i \hat{b}_0$

Suppose we use the *residual sum of squares* to define how well a number "summarizes" a set:

$$RSS(\hat{b}_0) = \sum_i |x_i - \hat{b}_0|^2 = \sum_i |e_i|^2$$

How do we select the best b_0 ?

$$\frac{\partial RSS}{\partial \hat{b}_0} = -2\sum_i^n (x_i - \hat{b}_0)$$

We can think about the mean through a different lens...

- Let \hat{b}_0 be a "candidate"
- The residual for the *i*th observation is $e_i = x_i \hat{b}_0$

Suppose we use the *residual sum of squares* to define how well a number "summarizes" a set:

$$RSS(\hat{b}_0) = \sum_i |x_i - \hat{b}_0|^2 = \sum_i |e_i|^2$$

How do we select the best b_0 ?

$$\frac{\partial RSS}{\partial \hat{b}_0} = -2\sum_i^n (x_i - \hat{b}_0)$$

If you need a refresher on notation:

https://www.youtube.com/watch?v=bPvtv780h3k

Measure of centrality

The **mean** is the value \hat{b}_0 which minimizes

$$RSS(\hat{b}_0) = \sum_i^n (x_i - \hat{b}_0)^2 = \sum_i |e_i|^2$$

We often also use \bar{y} to denote the mean of the $x_1, x_2, \ldots x_n$. The **median** is a value \hat{b}_0 which minimizes

$$\sum_{i}^{n}|x_{i}-\hat{b}_{0}|=\sum_{i}|e_{i}|$$

The **mode** is a value \hat{b}_0 which minimizes

$$\sum_{i}^{n} |x_{i} - \hat{b}_{0}|^{0} = \sum_{i} |e_{i}|^{0},$$

with here the (unusual) convention $0^0 = 0$.

Measuring spread of data

The variance of a data set is defined as:

$$\hat{\sigma}_X^2 = \operatorname{var} = \frac{1}{n} \sum_i (x_i - \bar{x})^2 = \frac{RSS(\bar{x})}{n}$$

The standard deviation of a data set is defined as:

$$\mathsf{sd} = \sqrt{\hat{\sigma}_X^2}$$

Sample data vs Population distribution

Random variable notation

So far, we've discussed observing a sample of data, but now we will define some notation for random variables

9/20

Random variable notation

So far, we've discussed observing a sample of data, but now we will define some notation for random variables

Let X_i denote a random variable (sometimes we will drop the subscript).

- Roughly speaking, random variables take a "process" and output a number
- *E*(·) will denote the "expectation" which roughly speaking means the average in the population or what we would get if we could take an infinite number of samples
- E(X) denotes the (population) mean of X, also sometimes will use μ_X
- We will denote the (population) variance of X as

$$\sigma_X^2 = E\left[(X - \mu_X)^2\right]$$

Random variable notation

So far, we've discussed observing a sample of data, but now we will define some notation for random variables

Let X_i denote a random variable (sometimes we will drop the subscript).

- Roughly speaking, random variables take a "process" and output a number
- *E*(·) will denote the "expectation" which roughly speaking means the average in the population or what we would get if we could take an infinite number of samples
- E(X) denotes the (population) mean of X, also sometimes will use μ_X
- We will denote the (population) variance of X as

$$\sigma_X^2 = E\left[(X - \mu_X)^2\right]$$

We will generally use lower case letters to denote numbers

- Typically, x_i will denote the realization of random variable X_i
- \bar{x} denotes the mean of the observations x_1, x_2, \ldots, x_n
- $\hat{\sigma}_x^2$ denotes the variance of the observations

Suppose we have some observations x_1, x_2, \ldots, x_n which are sampled from a population with a true mean of μ_X and true variance of σ_x^2 . How would we estimate the true variance if it is unknown?

$$\sigma_x^2 = E\left[(X - \mu_X)^2\right]$$

Suppose we have some observations $x_1, x_2, ..., x_n$ which are sampled from a population with a true mean of μ_X and true variance of σ_x^2 . How would we estimate the true variance if it is unknown?

$$\sigma_x^2 = E\left[(X - \mu_X)^2\right]$$

If we knew μ_X , we could use

$$\hat{\sigma}_x^2 = \frac{1}{n} \sum_{i}^{n} (x_i - \mu_X)^2 = \frac{1}{n} RSS(\mu_X)$$

and

$$E(\hat{\sigma}_x^2) = \sigma_x^2$$

Suppose we have some observations $x_1, x_2, ..., x_n$ which are sampled from a population with a true mean of μ_X and true variance of σ_x^2 . How would we estimate the true variance if it is unknown?

$$\sigma_x^2 = E\left[(X - \mu_X)^2\right]$$

If we knew μ_X , we could use

$$\hat{\sigma}_x^2 = \frac{1}{n} \sum_{i}^{n} (x_i - \mu_X)^2 = \frac{1}{n} RSS(\mu_X)$$

and

$$E(\hat{\sigma}_x^2) = \sigma_x^2$$

When we don't know μ_X , we can plug in \bar{x} , and use

$$s_x^2 = \frac{1}{n} \sum_{i}^{n} (x_i - \bar{x})^2 = \frac{1}{n} RSS(\bar{x})$$

Unfortunately, \bar{x} minimizes RSS, so

$$rac{1}{n} RSS(ar{x}) \leq rac{1}{n} RSS(\mu_{ imes})$$

and

$$E(s_x^2) \leq \sigma_x^2$$

Unfortunately, \bar{x} minimizes RSS, so

$$rac{1}{n} RSS(ar{x}) \leq rac{1}{n} RSS(\mu_{ imes})$$

and

$$E(s_x^2) \leq \sigma_x^2$$

Instead of dividing by n, we divide by n-1 and redefine

$$s_x^2 = \frac{1}{n-1} \sum_{i}^{n} (x_i - \bar{x})^2 = \frac{1}{n-1} RSS(\bar{x})$$

and we now have

$$E(s_x^2) = \sigma_x^2$$

Group Discussion

- What is a scientific problem you are interested in?
- Describe the population process, the data you might gather, and the statistic you might be interested in

Wine data

Figure: Wine Price vs Wine Rating from wine.com

Correlation measures the linear dependence between two variables.

- For two variables, X and Y, correlation is denoted by r_{XY}
- Correlation is between -1 and 1
- $r_{XY} = 0$ indicates no **linear** relationship
- $r_{XY} > 0$ indicates positive **linear** relationship
- $r_{XY} < 0$ indicates negative **linear** relationship
- $r_{XY} = \pm 1$ indicates perfect **linear** relationship

Cor = 0.99

For two variables, X and Y, the sample correlation is

$$r_{XY} = \frac{s_{XY}}{s_X s_Y}$$

where

Sample SD of X = s_X =
$$\sqrt{\frac{1}{n-1}\sum_{i}(x_i - \bar{x})^2}$$

Sample SD of Y = s_Y = $\sqrt{\frac{1}{n-1}\sum_{i}(y_i - \bar{y})^2}$
Sample Covariance = s_{XY} = $\frac{1}{n-1}\sum_{i}(x_i - \bar{x})(y_i - \bar{y})$

Sample Covariance

$$s_{XY} = \frac{1}{n-1}\sum_{i}(x_i - \bar{x})(y_i - \bar{y})$$

Non-linear association

Correlation only measure linear association

Wrap-up

- Population: process of interest
- Data: measurements gathered
- Statistic: calculation based on data
- Describe linear relationship between two variables using correlation