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Logistics

• Please take a look at the syllabus if you haven’t already

• Population, data, and statistics

• Start Module 1 (3 lectures total)

• Correlation
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Sample data vs Population distribution
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Summarizing a data set

Suppose we observe n numbers, x1, x2, . . . , xn. How might we summarize this set
of number succinctly?

• Mean:

x̄ =
1

n

n∑
i=1

xi =
1

n
(x1 + x2 + . . .+ xn)

• Median: “middle value”

• Mode: most frequent value
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Alternative way

We can think about the mean through a different lens. . .

• Let b̂0 be a “candidate”

• The residual for the ith observation is ei = xi − b̂0

Suppose we use the residual sum of squares to define how well a number
“summarizes” a set:

RSS(b̂0) =
∑
i

|xi − b̂0|2 =
∑
i

|ei |2

How do we select the best b0?

∂RSS

∂b̂0
= −2

n∑
i

(xi − b̂0)

If you need a refresher on notation:
https://www.youtube.com/watch?v=bPvtv780h3k
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Measure of centrality

The mean is the value b̂0 which minimizes

RSS(b̂0) =
n∑
i

(xi − b̂0)
2 =

∑
i

|ei |2

We often also use ȳ to denote the mean of the x1, x2, . . . xn.
The median is a value b̂0 which minimizes

n∑
i

|xi − b̂0| =
∑
i

|ei |

The mode is a value b̂0 which minimizes

n∑
i

|xi − b̂0|0 =
∑
i

|ei |0,

with here the (unusual) convention 00 = 0.
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Measuring spread of data

The variance of a data set is defined as:

σ̂2
X = var =

1

n

∑
i

(xi − x̄)2 =
RSS(x̄)

n

The standard deviation of a data set is defined as:

sd =
√

σ̂2
X
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Sample data vs Population distribution
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Random variable notation

So far, we’ve discussed observing a sample of data, but now we will define some
notation for random variables

Let Xi denote a random variable (sometimes we will drop the subscript).

• Roughly speaking, random variables take a “process” and output a number

• E (·) will denote the “expectation” which roughly speaking means the average
in the population or what we would get if we could take an infinite number of
samples

• E (X ) denotes the (population) mean of X , also sometimes will use µX

• We will denote the (population) variance of X as

σ2
X = E

[
(X − µX )

2
]

We will generally use lower case letters to denote numbers

• Typically, xi will denote the realization of random variable Xi

• x̄ denotes the mean of the observations x1, x2, . . . , xn
• σ̂2

x denotes the variance of the observations
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Estimating the variance

Suppose we have some observations x1, x2, . . . , xn which are sampled from a
population with a true mean of µX and true variance of σ2

x . How would we
estimate the true variance if it is unknown?

σ2
x = E

[
(X − µX )

2
]

If we knew µX , we could use

σ̂2
x =

1

n

n∑
i

(xi − µX )
2 =

1

n
RSS(µX )

and
E (σ̂2

x) = σ2
x

When we don’t know µX , we can plug in x̄ , and use

s2x =
1

n

n∑
i

(xi − x̄)2 =
1

n
RSS(x̄)
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Estimating the variance

Unfortunately, x̄ minimizes RSS, so

1

n
RSS(x̄) ≤ 1

n
RSS(µx)

and
E (s2x ) ≤ σ2

x

Instead of dividing by n, we divide by n − 1 and redefine

s2x =
1

n − 1

n∑
i

(xi − x̄)2 =
1

n − 1
RSS(x̄)

and we now have
E (s2x ) = σ2

x
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Group Discussion

• What is a scientific problem you are interested in?

• Describe the population process, the data you might gather, and the statistic
you might be interested in
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Correlation
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Wine data

Figure: Wine Price vs Wine Rating from wine.com
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Correlation

Correlation measures the linear dependence between two variables.

• For two variables, X and Y , correlation is denoted by rXY
• Correlation is between -1 and 1

• rXY = 0 indicates no linear relationship

• rXY > 0 indicates positive linear relationship

• rXY < 0 indicates negative linear relationship

• rXY = ±1 indicates perfect linear relationship
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Correlation
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Correlation

For two variables, X and Y , the sample correlation is

rXY =
sXY
sX sY

where

Sample SD of X = sX =

√
1

n − 1

∑
i

(xi − x̄)2

Sample SD of Y = sY =

√
1

n − 1

∑
i

(yi − ȳ)2

Sample Covariance = sXY =
1

n − 1

∑
i

(xi − x̄)(yi − ȳ)

Module 1, part 1 Lecture 2: Correlation Spring 2025 17 / 20



Sample Covariance

sXY =
1

n − 1

∑
i

(xi − x̄)(yi − ȳ)
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Non-linear association

Correlation only measure linear association
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Wrap-up

• Population: process of interest

• Data: measurements gathered

• Statistic: calculation based on data

• Describe linear relationship between two variables using correlation
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