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Logistics

• Continuing Module 6 on Generalized Linear Models
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Recap
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Logistic Regression

• Consider binary dependent variable which only takes values 0 or 1

• We want to see how certain covariates are associated with dependent variable

• Naively regressing Y onto X doesn’t quite work
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Logistic Regression

• No longer using the model:

Yi = b0 +
∑
k

bkxi,k + εi

• Consider modeling the expected value of Yi given Xi

E (Yi | Xi) = b0 +
∑
k

bkxi,k

• Since Yi is either 0 or 1

E (Yi | Xi) = P(Yi = 1 | Xi) = θ(Xi)

where θ(Xi) is the probability of “success” when the covariates are Xi

• Unfortunately, b0 +
∑

k bkxi,k can be arbitrarily large or small, but θ(Xi)
must be between 0 and 1
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Logistic Regression

The proposed solution is logistic regression where we assume that

θ(Xi) =
exp(b0 +

∑
k bkxi,k)

1 + exp(b0 +
∑

k bkxi,k)︸ ︷︷ ︸
Sigmoid function

(1)

which is equivalent to

log

(
θ(Xi)

1− θ(Xi)

)
︸ ︷︷ ︸

logit function

= b0 +
∑
k

bkxi,k (2)
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Interpretation of logistic regression

• The quantity θ/(1− θ) is known as the odds

• Can always map the odds back to the probability

P(Success) =
odds

1 + odds

• For a given coefficient bk , we would say:

• Positive coefficient bk means that larger values of Xk are associated with
larger odds (and probability)

• Negative coefficient bk means that larger values of Xk are associated with
smaller odds (and probability)

Interpretation Example

Suppose two observations have all the same covariate values except differ in Xk by
one unit. Then, the odds for the observation with the larger value of Xk would be
exp(bk) times the odds for the observation with the smaller value of Xk .
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NFL Field Goals

We use logistic regression to model the log odds of a successful kick as a linear
function of

• Distance (yards)

• Wind Speed (mph)

• Raining = 1, Dry = 0

Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.8185 0.3823 17.84 0.0000
Distance -0.1174 0.0079 -14.91 0.0000

Wind Speed -0.0355 0.0128 -2.77 0.0056
Rain -0.4385 0.2613 -1.68 0.0933
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NFL Field Goals

Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.8185 0.3823 17.84 0.0000
Distance -0.1174 0.0079 -14.91 0.0000

Wind Speed -0.0355 0.0128 -2.77 0.0056
Rain -0.4385 0.2613 -1.68 0.0933

• Considering two attempts with the same rain and wind conditions, the odds
of a successful attempt of a kick are exp(−.1174) = .889 of the odds of a
kick which is 1 yard longer

• Considering two attempts with the same distance and wind speed, when it is
raining, the odds of a successful attempt are exp(−.439) = .644 of the odds
when it is not raining
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NFL Field Goals

If a kick is from 35 yards, the wind speed is 10 mph, and it is not raining, then we
estimate that

log

(
θ(x)

1− θ(x)

)
= 6.819− .117× (35)− .036× (10)− .439(0) = 2.364

θ(x)

1− θ(x)
= exp(2.364) = 10.6334

P(Success) = θ(x) =
exp(2.364)

1 + exp(2.364)
= .914

If a kick is from 36 yards, the wind speed is 10 mph, and it is not raining, then we
estimate that

log

(
θ(x)

1− θ(x)

)
= 6.819− .117× (36)− .036× (10)− .439(0) = 2.247

θ(x)

1− θ(x)
= exp(2.247) = 9.459 = exp(2.364)× .889

P(Success) = θ(x) =
exp(2.247)

1 + exp(2.247)
= 0.904
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NFL Field Goals

If a kick is from 35 yards, the wind speed is 10 mph, and it is not raining, then we
estimate that

log

(
θ(x)

1− θ(x)

)
= 6.819− .117× (35)− .036× (10)− .439(0) = 2.364

θ(x)

1− θ(x)
= exp(2.364) = 10.6334

P(Success) = θ(x) =
exp(2.364)

1 + exp(2.364)
= .914

If a kick is from 35 yards, the wind speed is 10 mph, and it is raining, then we estimate
that

log

(
θ(x)

1− θ(x)

)
= 6.819− .117× (35)− .036× (10)− .439(1) = 1.935

θ(x)

1− θ(x)
= exp(1.935) = 6.855 = exp(2.364)× .644

P(Success) = θ(x) =
exp(1.935)

1 + exp(1.935)
= .873
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Generalized Linear Models
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Generalized Linear Model

Logistic regression is a specific example of a Generalized Linear Model (GLM)

In general GLM’s have 3 pieces

• Distribution (family): What is the distribution of the dependent variable
Y ?

• Link function: The conditional mean satisfies for a link function g :

g(E (Yi | Xi)) = ai .

This can be written:
g(θ(Xi)) = ai .

• Linear model of covariates: The “input” ai is a linear function of some
covariates

ai = b0 +
∑
k

bkxik
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Logistic Regression

• Distribution (family): Yi follows a Bernoulli distribution

• Yi can be either 0 or 1
• Mean: E(Y | Xi) = θ(Xi) where θ is also the probability of success
• Sometimes will only write θ instead of θ(Xi) for notational convenience
• Variance: var(Y ) = θ(1− θ)

• Link function: We use the logit function:

log

(
θ

1− θ

)
= ai

• Linear model of covariates: The value ai = b0 +
∑

k bkxik
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Poisson distribution

Distribution (family): Yi follows a Poisson distribution and can be any
non-negative whole number: 0, 1, 2, . . .

• Poisson distribution can be used to model count data

• Examples:
• Number of customers who enter a shop in a given hour
• Number of birds which pass a sensor
• Poisson can be thought of as a Binomial where number of trials is very very

large, and probability of success is very very small
• Each millisecond is a trial; A success is a bird passing the sensor in that given

millisecond

• Poisson distribution has 1 parameter:
• Mean parameter: E(Yi ) = θ (sometimes notation used is λ)
• Variance: var(Yi ) = θ (so mean and variance are the same!)
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Poisson distribution

Figure: Poisson distribution (via wikipedia)
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Poisson distribution

• Distribution (family): Yi follows a Poisson distribution and can be any
non-negative whole number: 0, 1, 2, . . .

• Link function: is the log function

log (E (Yi | Xi)) = b0 +
∑
k

bkxik
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Poisson Regression

log (E (Yi | Xi)) = b0 +
∑
k

bkxi,k

Suppose two observations have all the same covariate values except differ in xk by
one unit with x1,k = x2,k + 1

log (E (Y1 | X1))− log (E (Y2 | X2)) = bk(x1,k − x2,k) = bk

Since,

log (E (Y1 | X1))− log (E (Y2 | X2)) = log

(
E (Y1 | X1)

E (Y2 | X2)

)
then, we also have

E (Y1 | X1)

E (Y2 | X2)
= exp(bk)
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Poisson Regression

E (Y1 | X1)

E (Y2 | X2)
= exp(bk)

Suppose two observations have all the same covariate values except differ in xk by
one unit with x1,k = x2,k + 1, then the expected mean for observations with
covariates x1 is exp(bk) times the expected mean for observations with covariates
x2
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GLMs

GLMs are an entire semester worth of material, which we can’t cover, but there’s
a lot more they can do:

• You can use GLMs to model various other distributions

• Categorical data: data which falls into more than 2 categories
• Type of house: bungalow, cottage, ranch style, etc

• Ordinal data: categorical data which has a natural ordering
• Likert scale: Very poor, poor, fair, good, very good

• Exponential/gamma data: continuous data that is only positive and skewed
right

• How long do I have to wait to be seated at a busy restaurant?
• How long will a machine at a factory last before it needs to be repaired?
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GLM vs transformation

At first, GLMs may seem similar to using a transformation of the dependent
variable

When we use some function g to transform the dependent variable Y , we are
fitting a model which assumed:

E (g(Yi )) = b0 +
∑
k

bkxik

When we are using a glm with link function g , we are fitting a model which
assumes:

g (E (Yi )) = b0 +
∑
k

bkxik

and in general, if g(a) is not a linear function of a (i.e., g(a) = b0 + b1a), then

E (g(Yi )) ̸= g (E (Yi ))
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GLM vs transformation

Suppose Yi is a Bernoulli random variable with probability of success θ = .5 and
suppose g(a) = a2

Because Yi is either 0 or 1, then Y 2
i = Yi so

E (g(Yi )) = E (Y 2
i ) = E (Yi ) = θ

However,
g ((E (Yi )) = g (θ) = θ2

θ ̸= θ2
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GLM vs transformation

Suppose Yi is a Poisson random variable with mean θ = 2 and suppose
g(a) = log(a)

Transforming Yi may not make sense since Yi can be 0, and log(0) = −∞

E (g(Yi )) = E (Y 2
i ) = E (Yi ) = θ

However, since θ > 0, then

g ((E (Yi )) = g (θ) = log(θ)

still makes sense
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GLM vs transformation

GLM’s also typically specify how the conditional variance depends on the
conditional mean

• Before, we assumed homoscedasticity so that the conditional variance does
not depend on the covariates or the conditional mean (fitted value ŷi )

• Now, we assume that the conditional variance depends on the conditional
mean E (Y | X) in a specific way

• Bernoulli: var(Yi | Xi) = θ(Xi)(1− θ(Xi))
• Poisson: var(Yi | Xi) = θ(Xi)
• If the true variance is smaller/larger than what we specify, we would say that

the data is underdispersed/overdispersed.
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Recap

• GLMs are a framework for regression with broader types of data

• Requires specifying a distribution of the outcome and a link function which
connects a parameter of the distribution to a linear function of the covariates

• Details on how to fit these models on Monday
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