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Logistics

• Assessment 5 due 16th April 23:59

• Today we go over high-dimensional regression
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Generalized Linear Models: Review
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Key Concepts: GLM Review

• GLMs extend linear regression through:
• Maximum likelihood estimation
• Link functions connecting predictors to

response
• Different probability distributions for the

response

• MLEs find parameter values that maximize
the probability of observing our data

Parameters

Likelihood

MLE
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From Linear Regression to GLMs

Linear Regression Generalized Linear Models
E (Yi | Xi) = b0 +

∑
k bkxi,k g (E (Yi | Xi)) = b0 +

∑
k bkxi,k

Constant variance (homoscedas-
tic)

Variance structure depends on the mean

Gaussian errors Various distributions (Binomial, Poisson,
etc.)

Independence of observations Independence of observations

Key Insight

GLMs extend linear models by allowing for non-normal distributions and
non-constant variance through a link function g(·).
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Model Assumptions
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Three Critical GLM Assumptions

1 Correct Mean Structure: g (E (Yi | Xi)) = b0 +
∑

k bkxi,k
• Link function correctly connects predictors to response

2 Correct Variance Structure: var(Yi | Xi) follows the specified model
• Variance depends on mean in a specific way based on distribution

3 Independence: Observations are independent of each other
• No clustering or temporal correlation
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Checking Mean Structure Assumption

Key Approaches:

• Compare fitted values with actual values

• Examine Pearson residuals:

ri =
yi − µ̂i√
̂var(Yi | Xi)

• For binary data:
• Group observations with similar predicted probabilities
• Compare average observed outcomes in each group to predictions
• Example: Check if observations with predicted success 65-70% actually

succeed at that rate

Visual Diagnostics

Plots of residuals vs. fitted values should show no systematic patterns if the mean
structure is correct.
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Diagnostics for Model Assumptions in GLMs

Key Diagnostic Approaches
• Residual plots help us evaluate if our model assumptions are met

• We’ll examine two types of models with NFL data:
• Poisson regression for count data (penalty counts)
• Logistic regression for binary data (field goal success)
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Poisson Regression Diagnostics: Response Residuals

What we observe:
• Funnel shape pattern
• Wider spread as fitted values increase
• Asymmetric spread (more positive residuals)

What this suggests:
• Possible overdispersion issue
• Expected for count data

plot(mod$fitted, resid(mod, type = "response"))
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Poisson Regression Diagnostics: Pearson Residuals

What we observe:
• Residuals standardized by estimated standard deviation
• Still shows spreading pattern
• Mean of squared Pearson residuals 1.3

What this indicates:
• Mild overdispersion
• Mean structure may be reasonable

plot(mod$fitted, resid(mod, type = "pearson"))
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Logistic Regression Diagnostics: Raw Data

What we observe:

• Binary outcome (0 or 1)

• Predicted probabilities mostly between 0.4-1.0

• More 1s at higher predicted probabilities

Limitations:

• Hard to assess fit directly from this plot

• Binary data will always appear in this pattern
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Logistic Regression Diagnostics: Calibration Plot

How to read this plot:
• Points represent grouped observations with similar predicted values
• Red line shows perfect calibration
• Dotted lines show confidence bands

What this shows:
• Good calibration - points near the line
• Mean structure assumption appears satisfied
• Model predicts probabilities accurately
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Addressing Mean Structure Issues

When to take action
Reconsider your mean structure when:

• Systematic patterns exist in
residuals

• Calibration plots show poor fit

• Model consistently
over/under-predicts

Potential Solutions
• Try a different distribution family

• Negative binomial for
overdispersed counts

• Beta-binomial for overdispersed
proportions

• Change the link function
• Probit instead of logit
• Log vs. identity

• Transform or add predictors
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Variance Assumption in GLMs

Key Principle
• In GLMs, variance depends on the

mean

• Each distribution family implies a
specific variance structure:

var(Yi | Xi) = f (µi )

• If this relationship is misspecified,
inference suffers

Evidence of Variance Issues
• Funnel-shaped residual plots

• Mean of squared Pearson residuals
far from 1.0

• Confidence intervals too
narrow/wide

• Our example: Pearson residuals 1.3
suggests mild overdispersion

Two Approaches to Address Variance Issues
• Change the distribution family: Alters both mean and variance structure

• Account for over/underdispersion: Adjust standard errors while keeping
coefficient estimates

True Variance = Model Based Variance× Dispersion factor ϕ
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Example: Addressing Overdispersion in Count Models

Poisson Regression

var(Yi | Xi) = E (Yi | Xi) = θ(Xi)

• Variance = Mean (equality)

• Restrictive assumption

• Often violated in real data

Solutions for Overdispersion

Negative Binomial:

var(Yi | Xi) = θ(Xi) +
1

r
θ(Xi)

2

Quasi-Poisson:

var(Yi | Xi) = ϕ · θ(Xi)

When to use each approach
• Negative Binomial: When variance increases quadratically with the mean

• Quasi-Poisson: When variance is proportional to the mean

• For our NFL penalties example (dispersion factor 1.3), either approach would
work
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Independence Assumption

The requirement

Each observation must be independent
of other observations:

• No clustering effects

• No temporal correlation

• No spatial correlation

Detecting violations
• Plot residuals against time/space

• Check residuals by group

• Examine autocorrelation

Addressing dependence
• Random effects models:

• Account for clustering
• Allow for correlation within

groups

• GEE (Generalized Estimating
Equations):

• Focus on population-average
effects

• Flexible correlation structures

• Note: These methods are more
complex and interpretation
changes
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Summary: Checking and Addressing GLM Assumptions

Mean Structure
• Check:

• Residual plots
• Calibration plots

• Fix:
• Different

distribution
• Different link

function
• Transform/add

predictors

Variance Structure
• Check:

• Squared Pearson
residuals

• Funnel shapes in
plots

• Fix:
• Different

distribution
• Quasi-likelihood
• Robust standard

errors

Independence
• Check:

• Temporal patterns
• Group-based

patterns

• Fix:
• Random effects
• GEE approaches
• Time series

methods

Our NFL Examples
• Poisson model: Shows mild overdispersion (1.3), might benefit from

quasi-Poisson

• Logistic model: Shows good calibration, mean structure appears appropriate

• Both models: Independence assumption requires additional diagnostics
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High-dimensional Regression
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Motivation

“Genomic prediction and GWAS of yield, quality and disease-related traits in
spring barley and winter wheat” (Tsai et. al., Scientific Report 2020)

• Authors are interested in identifying genetic markers associated with yield,
protein content, disease resistance in spring barley and winter wheat

1

1
Photo from: https://fieldcropnews.com/2020/09/winter-barley-is-making-a-comeback-in-ontario/
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Problem

• There were p = 4, 056 genetic markers in spring barley and p = 11, 154
genetic markers in winter wheat

• Genetic markers take values {0, 1, 2}
• Tested roughly n = 1300 breeding lines for barley and wheat

• Number of covariates (genetic markers) is greater than sample size (breeding
lines)

• Model selection problem where p is very very large
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Problem

• When the number of covariates, p, is large relative to the number of samples,
n, the estimates of each coefficient can be imprecise

• When p > n, linear regression isn’t just imprecise, it’s ill-defined

• The RSS can be made 0

• Different sets of coefficients can be used to make the RSS 0
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Problem

When p > n, there is not a unique set of coefficients which can make RSS 0

• Consider the case where we have a dummy variable for each observation and
one continuous covariate

• For any slope for the continuous covariate b̂1
• Set the coefficient of the dummy variable equal to the observation for the

sample so that b̂obs i = yi − b1xi,1
• Then, ŷi = yi

ŷi = b1xi,1 + b̂obs i = b1xi,1 + yi − b1xi,1 = yi
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Solution

A solution to pick a specific value for b̂ is to minimize not just the RSS, but

min
b̂

∑
i

(yi − ŷi )
2 + Penalty(b̂)

• The Penalty(b̂) term can be various quantities

• If Penalty(b̂) term is the number of non-zero entries in b̂, then we get
something that almost is like AIC/BIC

• Other choices for Penalty(b̂)

L1 Penalty : λ
∑
k

|b̂k | = λ∥b̂∥1

L2 Penalty : λ
∑
k

b̂2k = λ∥b̂∥22
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Solution

The LASSO (Least absolute shrinkage and selection operator) estimator solves the
following:

min
b̂

∑
i

(yi − ŷi )
2 + λ

∑
k

|b̂k |

The Ride Regression estimator solves the following:

min
b̂

∑
i

(yi − ŷi )
2 + λ

∑
k

b2k
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Penalized Regression

Why is this good?

• Allows us to select a specific value for b̂

• Computationally, much easier than fitting every sub-set of variables and
comparing the RSS (or AIC or BIC)

• Fit one model with all covariates included
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Lasso

The LASSO (Least absolute shrinkage and selection operator) estimator solves the
following:

min
b̂

∑
i

(yi − ŷi )
2 + λ

∑
k

|b̂k |

• Usually, the solution b̂ is “sparse” where many coefficients are set to 0

• Also “encourages” solutions where |b̂k | is closer to 0

• Similar to a model selection procedure

• User sets λ to a specific value in advance

• Larger values of λ typically mean more estimated coefficients are 0
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Choosing λ

The Ride Regression estimator solves the following:

min
b̂

∑
i

(yi − ŷi )
2 + λ

∑
k

b2k

• Usually, the solution b̂ is not “sparse” where all coefficients non-zero

• Can improve predictions (similar to model selection), but still includes all
covariates

• Also “encourages” solutions where |b̂k | is closer to 0

• User sets λ to a specific value in advance

• Larger values of λ typically mean estimated coefficients are closer to 0
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Summary

• Penalized regression can be a useful way to navigate the complexity trade-off

• Plays a similar role as model selection

• Lasso regression “picks” covariates and also affects the estimated coefficients

• Ridge regression includes all covariates and affects the estimated coefficients

• As seen in lab, both can outperform linear regression when p is large relative
to n
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