# BTRY 6020: Module 6 GLMs and High-dimensional Regression

Spring 2025

# Logistics

- Assessment 5 due 16th April 23:59
- Today we go over high-dimensional regression

# Generalized Linear Models: Review

# Key Concepts: GLM Review



- GLMs extend linear regression through:
  - Maximum likelihood estimation
  - Link functions connecting predictors to response
  - Different probability distributions for the response
- MLEs find parameter values that maximize the probability of observing our data

## From Linear Regression to GLMs

**Linear Regression**   $E(Y_i | \mathbf{X}_i) = b_0 + \sum_k b_k x_{i,k}$ Constant variance (homoscedastic) Gaussian errors

Independence of observations

**Generalized Linear Models**  $g(E(Y_i | \mathbf{X}_i)) = b_0 + \sum_k b_k x_{i,k}$ Variance structure depends on the mean

Various distributions (Binomial, Poisson, etc.) Independence of observations

### Key Insight

GLMs extend linear models by allowing for non-normal distributions and non-constant variance through a link function  $g(\cdot)$ .

# Model Assumptions

## Three Critical GLM Assumptions

- **Orrect Mean Structure:**  $g(E(Y_i | \mathbf{X}_i)) = b_0 + \sum_k b_k x_{i,k}$ 
  - · Link function correctly connects predictors to response
- **②** Correct Variance Structure:  $var(Y_i | X_i)$  follows the specified model
  - Variance depends on mean in a specific way based on distribution
- **Independence:** Observations are independent of each other
  - No clustering or temporal correlation

# Checking Mean Structure Assumption

### Key Approaches:

- Compare fitted values with actual values
- Examine Pearson residuals:

$$r_i = rac{y_i - \hat{\mu}_i}{\sqrt{ ext{var}(Y_i \mid \mathbf{X_i})}}$$

- For binary data:
  - Group observations with similar predicted probabilities
  - Compare average observed outcomes in each group to predictions
  - Example: Check if observations with predicted success 65-70% actually succeed at that rate

### Visual Diagnostics

Plots of residuals vs. fitted values should show no systematic patterns if the mean structure is correct.

# Diagnostics for Model Assumptions in GLMs

### Key Diagnostic Approaches

- Residual plots help us evaluate if our model assumptions are met
- We'll examine two types of models with NFL data:
  - Poisson regression for count data (penalty counts)
  - Logistic regression for binary data (field goal success)

# Poisson Regression Diagnostics: Response Residuals



#### What we observe:

- Funnel shape pattern
- Wider spread as fitted values increase
- Asymmetric spread (more positive residuals)

#### What this suggests:

- Possible overdispersion issue
- Expected for count data

plot(mod\$fitted, resid(mod, type = "response"))

# Poisson Regression Diagnostics: Pearson Residuals

Pearson Residuals



#### What we observe:

- · Residuals standardized by estimated standard deviation
- Still shows spreading pattern
- Mean of squared Pearson residuals 1.3

#### What this indicates:

- Mild overdispersion
- Mean structure may be reasonable

plot(mod\$fitted, resid(mod, type = "pearson"))

# Logistic Regression Diagnostics: Raw Data



#### What we observe:

- Binary outcome (0 or 1)
- Predicted probabilities mostly between 0.4-1.0
- More 1s at higher predicted probabilities

#### Limitations:

- Hard to assess fit directly from this plot
- Binary data will always appear in this pattern

# Logistic Regression Diagnostics: Calibration Plot



### How to read this plot:

- Points represent grouped observations with similar predicted values
- Red line shows perfect calibration
- Dotted lines show confidence bands

### What this shows:

- Good calibration points near the line
- Mean structure assumption appears satisfied
- Model predicts probabilities accurately

Spring 2025 13 / 29

# Addressing Mean Structure Issues

### When to take action

Reconsider your mean structure when:

- Systematic patterns exist in residuals
- Calibration plots show poor fit
- Model consistently over/under-predicts

### Potential Solutions

- Try a different distribution family
  - Negative binomial for overdispersed counts
  - Beta-binomial for overdispersed proportions
- Change the link function
  - Probit instead of logit
  - Log vs. identity
- Transform or add predictors

# Variance Assumption in GLMs

### Key Principle

- In GLMs, variance depends on the mean
- Each distribution family implies a specific variance structure:

 $\operatorname{var}(Y_i \mid \mathbf{X_i}) = f(\mu_i)$ 

• If this relationship is misspecified, inference suffers

### Evidence of Variance Issues

- Funnel-shaped residual plots
- Mean of squared Pearson residuals far from 1.0
- Confidence intervals too narrow/wide
- Our example: Pearson residuals 1.3 suggests mild overdispersion

### Two Approaches to Address Variance Issues

- Change the distribution family: Alters both mean and variance structure
- Account for over/underdispersion: Adjust standard errors while keeping coefficient estimates

True Variance = Model Based Variance  $\times$  Dispersion factor  $\phi$ 

15/29

# Example: Addressing Overdispersion in Count Models

### Poisson Regression

 $\operatorname{var}(Y_i \mid \mathbf{X_i}) = E(Y_i \mid \mathbf{X_i}) = \theta(\mathbf{X_i})$ 

- Variance = Mean (equality)
- Restrictive assumption
- Often violated in real data

Solutions for Overdispersion **Negative Binomial:** 

$$\mathsf{var}(Y_i \mid \mathsf{X_i}) = heta(\mathsf{X_i}) + rac{1}{r} heta(\mathsf{X_i})^2$$

Quasi-Poisson:

$$\mathsf{var}(\mathbf{Y}_i \mid \mathbf{X}_i) = \phi \cdot \theta(\mathbf{X}_i)$$

### When to use each approach

- Negative Binomial: When variance increases quadratically with the mean
- Quasi-Poisson: When variance is proportional to the mean
- For our NFL penalties example (dispersion factor 1.3), either approach would work

**BTRY 6020** 

## Independence Assumption

### The requirement

Each observation must be independent of other observations:

- No clustering effects
- No temporal correlation
- No spatial correlation

### Detecting violations

- Plot residuals against time/space
- Check residuals by group
- Examine autocorrelation

### Addressing dependence

- Random effects models:
  - Account for clustering
  - Allow for correlation within groups
- GEE (Generalized Estimating Equations):
  - Focus on population-average effects
  - Flexible correlation structures
- Note: These methods are more complex and interpretation changes

# Summary: Checking and Addressing GLM Assumptions

### Mean Structure

- Check:
  - Residual plots
  - Calibration plots

#### • Fix:

- Different distribution
- Different link function
- Transform/add predictors

### Variance Structure

- Check:
  - Squared Pearson residuals
  - Funnel shapes in plots
- Fix:
  - Different distribution
  - Quasi-likelihood
  - Robust standard errors

### Independence

- Check:
  - Temporal patterns
  - Group-based patterns

### • Fix:

- Random effects
- GEE approaches
- Time series methods

### Our NFL Examples

- **Poisson model:** Shows mild overdispersion (1.3), might benefit from quasi-Poisson
- Logistic model: Shows good calibration, mean structure appears appropriate
- Both models: Independence assumption requires additional diagnostics

**BTRY 6020** 

# High-dimensional Regression

### Motivation

"Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat" (Tsai et. al., Scientific Report 2020)

• Authors are interested in identifying genetic markers associated with yield, protein content, disease resistance in spring barley and winter wheat



Photo from: https://fieldcropnews.com/2020/09/winter-barley-is-making-a-comeback-in-ontario/

### Problem

- There were p = 4,056 genetic markers in spring barley and p = 11,154 genetic markers in winter wheat
- Genetic markers take values {0,1,2}
- Tested roughly n = 1300 breeding lines for barley and wheat
- Number of covariates (genetic markers) is greater than sample size (breeding lines)
- Model selection problem where *p* is very very large

## Problem

- When the number of covariates, *p*, is large relative to the number of samples, *n*, the estimates of each coefficient can be imprecise
- When p > n, linear regression isn't just imprecise, it's ill-defined
- The RSS can be made 0
- Different sets of coefficients can be used to make the RSS 0

### Problem

When p > n, there is not a unique set of coefficients which can make RSS 0

- Consider the case where we have a dummy variable for each observation and one continuous covariate
- For any slope for the continuous covariate  $\hat{b}_1$
- Set the coefficient of the dummy variable equal to the observation for the sample so that  $\hat{b}_{\rm obs\ i}=y_i-b_1x_{i,1}$

• Then, 
$$\hat{y}_i = y_i$$

$$\hat{y}_i = b_1 x_{i,1} + \hat{b}_{obs\ i} = b_1 x_{i,1} + y_i - b_1 x_{i,1} = y_i$$

23 / 29

Spring 2025

### Solution

A solution to pick a specific value for  $\boldsymbol{\hat{b}}$  is to minimize not just the RSS, but

$$\min_{\hat{\mathbf{b}}} \sum_{i} (y_i - \hat{y}_i)^2 + \text{Penalty}(\hat{\mathbf{b}})$$

- The  $\mathsf{Penalty}(\hat{\mathbf{b}})$  term can be various quantities
- If  $\mathsf{Penalty}(\hat{b})$  term is the number of non-zero entries in  $\hat{b},$  then we get something that almost is like AIC/BIC
- Other choices for  $Penalty(\hat{\mathbf{b}})$

$$L_1 \text{ Penalty} : \lambda \sum_k |\hat{b}_k| = \lambda \|\hat{\mathbf{b}}\|_1$$
$$L_2 \text{ Penalty} : \lambda \sum_k \hat{b}_k^2 = \lambda \|\hat{\mathbf{b}}\|_2^2$$

### Solution

The LASSO (Least absolute shrinkage and selection operator) estimator solves the following:

$$\min_{\hat{\mathbf{b}}} \sum_i (y_i - \hat{y}_i)^2 + \lambda \sum_k |\hat{b}_k|$$

The Ride Regression estimator solves the following:

$$\min_{\hat{\mathbf{b}}} \sum_{i} (y_i - \hat{y}_i)^2 + \lambda \sum_{k} b_k^2$$

# Penalized Regression

Why is this good?

- Allows us to select a specific value for  $\boldsymbol{\hat{b}}$
- Computationally, much easier than fitting every sub-set of variables and comparing the RSS (or AIC or BIC)
- Fit one model with all covariates included

### Lasso

The LASSO (Least absolute shrinkage and selection operator) estimator solves the following:

$$\min_{\hat{\mathbf{b}}} \sum_i (y_i - \hat{y}_i)^2 + \lambda \sum_k |\hat{b}_k|$$

- Usually, the solution  $\boldsymbol{\hat{b}}$  is "sparse" where many coefficients are set to 0
- Also "encourages" solutions where  $|\hat{b}_k|$  is closer to 0
- Similar to a model selection procedure
- User sets  $\lambda$  to a specific value in advance
- Larger values of  $\lambda$  typically mean more estimated coefficients are 0

# Choosing $\lambda$

The Ride Regression estimator solves the following:

$$\min_{\hat{\mathbf{b}}} \sum_{i} (y_i - \hat{y}_i)^2 + \lambda \sum_{k} b_k^2$$

- Usually, the solution  $\boldsymbol{\hat{b}}$  is not "sparse" where all coefficients non-zero
- Can improve predictions (similar to model selection), but still includes all covariates
- Also "encourages" solutions where  $|\hat{b}_k|$  is closer to 0
- User sets  $\lambda$  to a specific value in advance
- Larger values of  $\lambda$  typically mean estimated coefficients are closer to 0

# Summary

- Penalized regression can be a useful way to navigate the complexity trade-off
- Plays a similar role as model selection
- Lasso regression "picks" covariates and also affects the estimated coefficients
- Ridge regression includes all covariates and affects the estimated coefficients
- As seen in lab, both can outperform linear regression when *p* is large relative to *n*