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Logistics

• Continue Module 6 on Generalized Linear Models

• Assessment deadline extended to Friday 18 April

• Lab is a little ahead, so

• Final project instructions posted on Friday

• R Markdown file, similar to module assessments
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Recap
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Generalized Linear Model

Logistic regression is a specific example of a Generalized Linear Model (GLM)

In general GLM’s have 3 pieces

• Distribution (family): What is the distribution of the dependent variable Y ?

• Link function: The conditional mean of

E (Yi | Xi) = g−1(ai )

is a function of some input; equivalent to saying:

g(E (Yi | Xi)) = ai

• Linear model of covariates: The “input” ai is a linear function of some
covariates so that

ai = b0 +
∑
k

bkxik
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Generalized Linear Model

Putting everything together, we have

g(E (Yi | Xi)) = b0 +
∑
k

bkxik

• Bernoulli or Binomial Data: E (Yi | Xi) = θ = P(Success),

log

(
θ

1− θ

)
= b0 +

∑
k

bkxik

• Poisson Data: E (Yi | Xi) = θ,

log (θ) = b0 +
∑
k

bkxik
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Discussion

What are examples from your field where a glm might be useful?

• Binary outcome?

• Count valued outcome?
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Maximum likelihood estimation
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Selecting model parameters

• In linear regression, we selected b̂ to minimize the RSS

∑
i

(yi − ŷi )
2 =

∑
i

(
yi − (b̂0 +

∑
k

b̂kxi,k)

)2

• In GLM’s we don’t minimize the sum of squares, but we instead maximize a
likelihood function

• Likelihood function can be for various tasks used similar to how we use RSS
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Likelihood functions

Given a distribution, the density/mass function tells us the probability of a
particular outcome

Suppose we observe, a Binomial random variable, Y , with m trials and the
probability of each trial is θ

• Probability of outcome y given some parameter theta

P(Y = y) =
m!

y !(m − y)!
θy (1− θ)m−y

• If m = 5 and θ = .7 and y = 2 then,

P(Y = 2) =
5!

2!(5− 2)!
.72(1− .7)5−2 = .1323

• If m = 5 and θ = .7 and y = 5 then,

P(Y = 5) =
5!

5!(5− 5)!
.75(1− .7)5−5 = .1681
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Likelihood functions

• Density/Mass functions are different for different distributions

• Given the distribution parameters, they tell us the probability that a specified
outcome will occur

• We can also go the other direction: given a model and observed outcomes,
what is the value of the parameters which make the outcome most likely

• Likelihood function: fix the data, and consider the probability a function of
the parameter(s)
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Likelihood functions

Given a distribution, the likelihood tells us the probability of a particular outcome

• Given an outcome y , for some θ the likelihood is

l(θ; y) =
m!

y !(m − y)!
θy (1− θ)m−y

• If m = 5 and y = 2, if θ = .7 then,

l(θ = .7; y = 2) =
5!

2!(5− 2)!
.72(1− .7)5−2 = .1323

• If m = 5 and y = 2, if θ = .4 then,

l(θ = .4; y = 2) =
5!

2!(5− 2)!
.52(1− .5)5−2 = .3456

• If m = 5 and y = 2, if θ = .2 then,

l(θ = .2; y = 2) =
5!

2!(5− 2)!
.22(1− .2)5−2 = .2048
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Likelihood functions

When the parameters of a distribution are unknown, then one way to estimate
them is to select the parameter under which the outcome has the highest
likelihood. This is called the maximum likelihood estimate (MLE).

• Given an outcome y , for some θ the likelihood is
l(θ = .7; y) = m!

y !(m−y)!θ
y (1− θ)m−y

• If m = 5 and y = 2, if θ = .7 then,

l(θ = .7; y) =
5!

2!(5− 2)!
.72(1− .7)5−2 = .1323

• If m = 5 and y = 2, if θ = .4 then,

l(θ = .4; y) =
5!

2!(5− 2)!
.52(1− .5)5−2 = .3456

• If m = 5 and y = 2, if θ = .2 then,

l(θ = .2; y) =
5!

2!(5− 2)!
.22(1− .2)5−2 = .2048
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Likelihood functions
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Log-Likelihood functions

Choosing the parameter which maximizes the log of the likelihood is equivalent to
maximizing the likelihood, and often easier mathematically
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Log-Likelihood functions

Choosing the parameter which maximizes the log of the likelihood is equivalent to
maximizing the likelihood, and often easier mathematically

For binomial data, when θ = E (Yi | Xi), the log-likelihood is

ℓ(θ; y) =
n∑
i

[
log

(
m!

yi !(m − yi )!

)
+ yi log(θ(Xi)) + (m − yi ) log(1− θ(Xi))

]

For Poisson data, when θ = E (Yi | Xi), the log-likelihood is

ℓ(θ; y) = −nθ +
n∑

i=1

[yi log(θ(Xi))− log(yi !)]
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Log-Likelihood functions

Choosing the parameter which maximizes the log of the likelihood is equivalent to
maximizing the likelihood, and often easier mathematically

For Gaussian data, when θ = E (Yi | Xi) and var(Yi ) = σ2, the log-likelihood is

ℓ(y; θ) = −1

2

n∑
i=1

(yi − θ(Xi))
2

σ2
− log(σ

√
2π)

When we re-write only in terms of θ(Xi), we get

ℓ(y; θ) = −n

2
− n

2
log(2π)− n

2
log

(
1

n

∑
i

(yi − θ(Xi))
2

)

∝ −n

2
log

(
1

n

∑
i

(yi − θ(Xi))
2

)
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Log-Likelihood functions

Linear regression is a GLM assuming a Gaussian distribution and link function is
just g(ai ) = ai (i.e. no transformation)
• Maximizing the log-likelihood

−n

2
log

(
1

n

∑
i

(yi − θ(Xi))
2

)
is equivalent to minimizing ∑

i

(yi − θ(Xi))
2

• When we use the link function g(ai ) = ai

g(E (Yi | Xi)) = E (Yi | Xi) = b0 +
∑
k

bkxi,k

so the procedure selects b̂ by minimizing∑
i

(yi − θ(Xi))
2 =

∑
i

(yi − (b̂0 +
∑
k

b̂kxi,k))
2

︸ ︷︷ ︸
RSS
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Likelihood functions

Picking the parameters which have the maximum likelihood, often coincides with
common sense procedures

• For Binomial, Poisson, and Gaussian data the maximum likelihood estimate
(not for GLMs) is just the sample mean

• For GLMs, the procedure is a bit more complicated, but conceptually similar

• The likelihood is a function of the conditional mean, θ(Xi), which a function
of b̂, so pick b̂ which maximizes the likelihood
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GLMs and likelihood functions

For GLMs can use the likelihood function in very similar way in which we used the
RSS for linear regression

• Fitting a GLM when assuming Gaussian data with g(ai ) = ai is equivalent to
linear regression (see slides at end for more details)

• A way to measure how well the model fits our data

• A way test whether covariates are “statistically significant”

• A way to select which covariates model to include
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Hypothesis Testing: multiple coefficients

Suppose we want to test H0 = b1 = b2 = . . . = 0
For linear regression, we used the F-test where:

F =
[RSS(Null)− RSS(Alt)]/(palt − pnull)

RSS(Alt)/(n − palt − 1)

is compared to an F distribution to compute p-values.

For GLM’s, we use
χ = 2(l1 − l0)

where l1 is the log-likelihood of the alternative model and l0 is the log-likelihood
of the null model. To compute a p-value, the test statistic χ is compared to a χ2

distribution.

BTRY 6020 Spring 2025 20 / 23



Hypothesis Testing: single coefficient

Suppose we want to test H0 : bk = β

• For linear regression, we used a t-test

• Can do a similar test for GLM’s using the summary function to form

z =
b̂k − β

ŝe(b̂)

and compare to a N(0, 1) (instead of T )

• For linear regression, using an F-test with 1 variable always gave exactly the
same result

• For GLMs, using a χ2 test with 1 variable will be similar as the z-test, but
not quite the same when n is small

• Generally, using χ2 test will be better when n is small

BTRY 6020 Spring 2025 21 / 23



Model Selection

For linear regression:

AIC = −n

2
log(RSS/n)− (number of parameters)

BIC = −n

2
log(RSS/n)− log(n)

2
(number of parameters)

For GLM’s,
AIC = −ℓ(θ̂; y)− (number of parameters)

BIC = −ℓ(θ̂; y)− log(n)

2
(number of parameters)
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Summary

• GLMs are a very flexible class of models which have three parts
• Distribution (family): distribution of the dependent variable (conditional on

covariates)
• Link function: some specified function which takes an input and maps to the

conditional mean of the dependent variable
• Linear model of covariates: The value ai = b0 +

∑
k bkxik

• GLMs are fit using a maximum likelihood principle

• Likelihood gives a way to measure “goodness of fit” for a particular model

• Using the likelihood allows us to do hypothesis testing
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