BTRY 6020: Module 6
Generalized Linear Models

Spring 2025



Logistics

® Continue Module 6 on Generalized Linear Models
® Assessment deadline extended to Friday 18 April

Lab is a little ahead, so

® Final project instructions posted on Friday

R Markdown file, similar to module assessments
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Recap



Generalized Linear Model
Logistic regression is a specific example of a Generalized Linear Model (GLM)

In general GLM's have 3 pieces
¢ Distribution (family): What is the distribution of the dependent variable Y?
® Link function: The conditional mean of

E(Y; X)) =g '(a)
is a function of some input; equivalent to saying:
g(E(Yi [ X)) = ai

® Linear model of covariates: The “input” a; is a linear function of some
covariates so that

aj = by + Z bieXix
K
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Generalized Linear Model

Putting everything together, we have

g(E(Yi | X)) = b0+zbkxik

k

® Bernoulli or Binomial Data: E(Y; | X;) = 6 = P(Success),

0
log ( ) = by + Z by Xik

® Poisson Data: E(Y; | X;) =0,

log (6) = bo + Y _ bixik
k
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Discussion

What are examples from your field where a glm might be useful?
® Binary outcome?

® Count valued outcome?
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Maximum likelihood estimation



Selecting model parameters

® In linear regression, we selected b to minimize the RSS

2
Z(Yi —9)? = Z (y,- — (bo + Z BkXi,k)>
k

i i
® |In GLM's we don't minimize the sum of squares, but we instead maximize a
likelihood function

® |ikelihood function can be for various tasks used similar to how we use RSS
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Likelihood functions

Given a distribution, the density/mass function tells us the probability of a
particular outcome

Suppose we observe, a Binomial random variable, Y, with m trials and the
probability of each trial is 6§
® Probability of outcome y given some parameter theta
m!
yi(m—y)!
® Ifm=5and # =.7 and y = 2 then,

P(Y =y) = 6”(1—6)™Y

5! 2 5-2
=—7(1-.7 =.1323
22y’ L =0)

=
~.<
I

N/
!

® Ifm=5and # =.7 and y =5 then,

|
= L.ﬁ(l —.7)°7° = .1681
5(5 —5)!

=
~.<
I

N
!
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Likelihood functions

® Density/Mass functions are different for different distributions
® Given the distribution parameters, they tell us the probability that a specified
outcome will occur

® We can also go the other direction: given a model and observed outcomes,
what is the value of the parameters which make the outcome most likely

® Likelihood function: fix the data, and consider the probability a function of
the parameter(s)
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Likelihood functions

Given a distribution, the likelihood tells us the probability of a particular outcome

® Given an outcome y, for some @ the likelihood is

m!
10;y) = ——=6Y(1—-0)""7
(0;y) y!(m_y)!( )
® Ifm=5and y =2, if § =.7 then,
N S 5! 2 5-2
/(9—.7,y—2)—2!(5_2)!.7 (1-.7) =.1323
® Ifm=5and y =2, if § = .4 then,
51
10=.4y ) 2!(5_2)!5( 5) 3456
® Ifm=5and y =2, if § = .2 then,
5!
I(0=2y=2)= ———2%1—.2)>2 = 204
O=2y=2=56 22012 048
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Likelihood functions

When the parameters of a distribution are unknown, then one way to estimate
them is to select the parameter under which the outcome has the highest
likelihood. This is called the maximum likelihood estimate (MLE).

® Given an outcome y, for some 6 the likelihood is
10=.T7,y)= P CEm ml__gy(1— @)Y

m—y)!
® Ifm=5and y =2, if § =.7 then,
51
=7y)=———T7*(1-.7)°2=.1323
0= 7:9) = 51755 7= )
® Ifm=5and y =2, if § = .4 then,
5! 2 5-2
=4 y)= ———5(1—. = .34
10 =.4;y) 21(5 — )] 59( 5) 3456

® Ifm=5and y =2, if § = .2 then,

5!
10=.2y)= 5

2(1 _ 9)5-2 _
522 (1-.2) 2048
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Likelihood functions
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Log-Likelihood functions

Choosing the parameter which maximizes the log of the likelihood is equivalent to
maximizing the likelihood, and often easier mathematically

Y =2, m=5
3
g §7
= o -
g -
= 8 =
= T T T T
0.0 0.2 0.4 06 08 1.0
theta
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theta
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Log-Likelihood functions

Choosing the parameter which maximizes the log of the likelihood is equivalent to
maximizing the likelihood, and often easier mathematically

For binomial data, when 6 = E(Y; | X;), the log-likelihood is
n

m!
(8:3) = Y [log (™) + 1 log(6(X9) + (m — y)log(1 — 6(X,)

For Poisson data, when 6 = E(Y; | X;), the log-likelihood is

U(6;y) = —nf + Y _ [yilog(6(Xi)) — log(yi!)]

i=1
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Log-Likelihood functions

Choosing the parameter which maximizes the log of the likelihood is equivalent to

maximizing the likelihood, and often easier mathematically

For Gaussian data, when 6 = E(Y; | X;) and var(Y;) = 02, the log-likelihood is

t(y: 0 Z Ui = 00%))” H(X — log(av/27)

When we re-write only in terms of 8(X;), we get
Uy 0) = —5 — *log(% - |og< Z(y, 0(Xi)) )

x -g g (1 Y- e(xi))2>
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Log-Likelihood functions

Linear regression is a GLM assuming a Gaussian distribution and link function is
just g(a;) = a; (i.e. no transformation)
® Maximizing the log-likelihood

n 1
) log (n Z( - 0(Xi)) )
is equivalent to minimizing

> (v — 0(Xi))?

i

® When we use the link function g(a;) = a;

g(E(Y; | X)) = E(Yi | X)) = bo+ ) _ bixi

so the procedure selects b by minimizing

Z(y, - 0(X Z()’: (bo + Z bixi))
K

i

RSS
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Likelihood functions

Picking the parameters which have the maximum likelihood, often coincides with
common sense procedures

® For Binomial, Poisson, and Gaussian data the maximum likelihood estimate
(not for GLMs) is just the sample mean

® For GLMs, the procedure is a bit more complicated, but conceptually similar

° Thg Iikelihooci is a function of the conditional mean, 6(X;), which a function
of b, so pick b which maximizes the likelihood
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GLMs and likelihood functions

For GLMs can use the likelihood function in very similar way in which we used the
RSS for linear regression

® Fitting a GLM when assuming Gaussian data with g(a;) = a; is equivalent to
linear regression (see slides at end for more details)

® A way to measure how well the model fits our data
® A way test whether covariates are “statistically significant”

® A way to select which covariates model to include
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Hypothesis Testing: multiple coefficients

Suppose we want to test Hp=b; = b, =... =0
For linear regression, we used the F-test where:

F_ [RSS(Null) — RSS(AIt)]/(pait — Pounl)
T RSS(AR)/(n— pax — 1)

is compared to an F distribution to compute p-values.

For GLM'’s, we use
X =2(h —h)

where /1 is the log-likelihood of the alternative model and /y is the log-likelihood
of the null model. To compute a p-value, the test statistic x is compared to a x>
distribution.
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Hypothesis Testing: single coefficient

Suppose we want to test Hy : by =

For linear regression, we used a t-test

Can do a similar test for GLM’s using the summary function to form

_b—p
7= —=
se(b)
and compare to a N(0,1) (instead of T)

For linear regression, using an F-test with 1 variable always gave exactly the
same result

For GLMs, using a x? test with 1 variable will be similar as the z-test, but
not quite the same when n is small

Generally, using x? test will be better when n is small
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Model Selection

For linear regression:

AIC = —g log(RSS/n) — (number of parameters)
n log(n)
BIC = ~> log(RSS/n) — T(number of parameters)

For GLM’s, R
AIC = —¢(0; y) — (number of parameters)

A |
BIC = —¢(6; y) — %(n)(number of parameters)
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Summary

® GLMs are a very flexible class of models which have three parts
® Distribution (family): distribution of the dependent variable (conditional on

covariates)
® Link function: some specified function which takes an input and maps to the

conditional mean of the dependent variable
® Linear model of covariates: The value a; = bo + Y, brxik

® GLMs are fit using a maximum likelihood principle
® Likelihood gives a way to measure “goodness of fit" for a particular model

® Using the likelihood allows us to do hypothesis testing
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