Lecture 23: Fixed Effects Models

Spring 2025

Logistics

- Continuing on Dependent Errors
- Today: Fixed Effects Models as a solution

Final Project

- Theoretical questions will be very close to assessments
- Practical work on a real-world databse
- Pick a database from https://www.kaggle.com/datasets
- Your database should have a continuous target (linear regression)
- Your objective will be:
 - · Compute all the sanity check to verify if assumptions hold
 - Apply procedures for assumption violations
 - Do variable selection / hypothesis testing
 - Explain what is the impact of each feature on the target.
- Objective: Have a github repo you will be able to showcase to future potential employers.
- Date: Full instructions released on May 5th. You will have until Sunday 11th to complete it and send your github repo link and pdf file by email (nbb45@cornell.edu).

Recap

Commonly used linear model where ε_i is an error term:

$$Y_i = b_0 + \sum_{k=1}^p b_k X_{i,k} + \varepsilon_i$$

Recap

Commonly used linear model where ε_i is an error term:

$$Y_i = b_0 + \sum_{k=1}^p b_k X_{i,k} + \varepsilon_i$$

Assumptions of the model:

- Linear function: $E(Y_i | \mathbf{X}_i = \mathbf{x}) = b_0 + \sum_k b_k x_k$
- Independent Errors: ε_i is independent of ε_j where i and j denote different observations
- Homoscedasticity: The error ε_i has mean 0 and is independent of X_i

Less important assumption:

• Normality: Sometimes, we assume that $\varepsilon_i \sim N(0, \sigma^2)$

The Problem of Dependent Errors

- We saw in the last lectures that dependent errors can arise from:
 - Repeated measures on the same individuals
 - Shared unmeasured factors across observations
 - Observations clustered within groups (regions, classrooms, etc.)

The Problem of Dependent Errors

- We saw in the last lectures that dependent errors can arise from:
 - Repeated measures on the same individuals
 - Shared unmeasured factors across observations
 - Observations clustered within groups (regions, classrooms, etc.)
- Consequences of ignoring dependent errors:
 - Incorrect sampling distribution
 - Underestimated standard errors
 - Inflated Type I error rates (rejecting true null 16% of time at $\alpha = .05$)
 - Potentially decreased power

Fixed Effects Models

Introduction to Fixed Effects

- Fixed effects models are a way to address dependent errors
- Key idea: Account for the source of dependence in the model
- Instead of trying to model the correlation structure of errors, we include variables that absorb the dependence

Introduction to Fixed Effects

- Fixed effects models are a way to address dependent errors
- Key idea: Account for the source of dependence in the model
- Instead of trying to model the correlation structure of errors, we include variables that absorb the dependence
- Used widely in:
 - Panel data analysis
 - Studies with repeated measurements
 - Multi-level data (e.g., students within classrooms)

Fixed Effects

Suppose this is the true model:

Cholesterol_{*i*,*k*} =
$$b_0 + b_1$$
red wine_{*i*,*k*} + $\varepsilon_{i,k}$
= $b_0 + b_1$ red wine_{*i*,*k*} + $\underbrace{\text{baseline cholesterol}_i + \delta_{i,k}}_{\varepsilon_{i,k}}$

• We use **cluster** to refer to the observations which are dependent

Fixed Effects

Suppose this is the true model:

Cholesterol_{*i*,*k*} =
$$b_0 + b_1$$
red wine_{*i*,*k*} + $\varepsilon_{i,k}$
= $b_0 + b_1$ red wine_{*i*,*k*} + baseline cholesterol_{*i*} + $\delta_{i,k}$

- We use cluster to refer to the observations which are dependent
- We could use a categorical variable that encodes belonging to a cluster

Cholesterol_{*i*,*k*} =
$$b_0 + b_1$$
red wine_{*i*} + $\sum_{Z=2}^n g_Z$ ClusterZ_{*i*} + $\varepsilon_{i,k}$
= $b_0 + b_1$ red wine_{*i*,*k*} + $g_i + \varepsilon_{i,k}$

where $Cluster Z_i = 1$ if individual *i* belong to cluster Z and is 0 otherwise

Fixed Effects

Suppose this is the true model:

Cholesterol_{*i*,*k*} =
$$b_0 + b_1$$
red wine_{*i*,*k*} + $\varepsilon_{i,k}$
= $b_0 + b_1$ red wine_{*i*,*k*} + $\underbrace{\text{baseline cholesterol}_i + \delta_{i,k}}_{\varepsilon_{i,k}}$

- We use **cluster** to refer to the observations which are dependent
- We could use a categorical variable that encodes belonging to a cluster

Cholesterol_{*i*,*k*} =
$$b_0 + b_1$$
red wine_{*i*} + $\sum_{Z=2}^n g_Z$ ClusterZ_{*i*} + $\varepsilon_{i,k}$
= $b_0 + b_1$ red wine_{*i*,*k*} + $g_i + \varepsilon_{i,k}$

where $Cluster Z_i = 1$ if individual *i* belong to cluster Z and is 0 otherwise

- This is called a fixed effect because gz is a fixed (but unknown) number
- We make no assumptions on g_Z and \hat{g}_Z is completely determined by the data

Samples from a population

- In some settings, the clusters you observe come from a larger population
- Each g_Z can be thought as being drawn from some distribution
- We might even assume a distribution for the g_Z

Population Cholesterol

1 Individual Fixed Effects

- Controls for time-invariant individual characteristics
- Example: Unobserved student ability in education studies

1 Individual Fixed Effects

- Controls for time-invariant individual characteristics
- Example: Unobserved student ability in education studies

Itime Fixed Effects

- Controls for factors that vary over time but affect all individuals
- Example: Economic conditions in different years

1 Individual Fixed Effects

- Controls for time-invariant individual characteristics
- Example: Unobserved student ability in education studies

Itime Fixed Effects

- Controls for factors that vary over time but affect all individuals
- Example: Economic conditions in different years

3 Two-way Fixed Effects

- Includes both individual and time fixed effects
- Example: Student-year panel with both student and year effects

1 Individual Fixed Effects

- Controls for time-invariant individual characteristics
- Example: Unobserved student ability in education studies

Itime Fixed Effects

- Controls for factors that vary over time but affect all individuals
- Example: Economic conditions in different years

3 Two-way Fixed Effects

- Includes both individual and time fixed effects
- Example: Student-year panel with both student and year effects

Group/Cluster Fixed Effects

- Controls for unobserved factors at group level
- Example: School fixed effects in student data

10/20

Spring 2025

Example: Panel Data Model

A panel data model with fixed effects:

$$y_{it} = \beta_0 + \beta_1 x_{it} + \alpha_i + \gamma_t + \varepsilon_{it}$$

Where:

- y_{it} is the outcome for individual *i* at time *t*
- x_{it} is the predictor of interest
- α_i is the individual fixed effect (captures all time-invariant individual characteristics)
- γ_t is the time fixed effect (captures all individual-invariant time effects)
- ε_{it} is the error term (now assumed independent)

Spring 2025

Example: Educational Achievement

Suppose we're studying the effect of study time on test scores:

$$Score_{ict} = \beta_0 + \beta_1 Study Time_{ict} + \alpha_i + \gamma_c + \delta_t + \varepsilon_{ict}$$

Where:

- Score_{ict} is the test score for student *i* in class *c* at time *t*
- StudyTime_{ict} is hours spent studying
- α_i is the student fixed effect (student ability)
- γ_c is the classroom fixed effect (teacher quality)
- δ_t is the time fixed effect (test difficulty)

Example: Educational Achievement

Suppose we're studying the effect of study time on test scores:

$$Score_{ict} = \beta_0 + \beta_1 Study Time_{ict} + \alpha_i + \gamma_c + \delta_t + \varepsilon_{ict}$$

Where:

- Score_{ict} is the test score for student *i* in class *c* at time *t*
- StudyTime_{ict} is hours spent studying
- α_i is the student fixed effect (student ability)
- γ_c is the classroom fixed effect (teacher quality)
- δ_t is the time fixed effect (test difficulty)

Without fixed effects, errors would be dependent because:

- Same student measured multiple times
- Students in same classroom share teacher effects

Implementation of Fixed Effects

Method 1: Dummy Variable Approach

- Include a dummy variable for each cluster (except one reference cluster)
- Straightforward but can be computationally intensive with many clusters

Implementation of Fixed Effects

Method 1: Dummy Variable Approach

- Include a dummy variable for each cluster (except one reference cluster)
- Straightforward but can be computationally intensive with many clusters

Method 2: Within Transformation (Demeaning)

• Subtract the cluster mean from each variable:

$$\widetilde{y}_{it} = y_{it} - \overline{y}_i$$

 $\widetilde{x}_{it} = x_{it} - \overline{x}_i$

- Removes all time-invariant effects (including fixed effects)
- Regress *ỹ_{it}* on *x_{it}*

Implementation of Fixed Effects

Method 1: Dummy Variable Approach

- Include a dummy variable for each cluster (except one reference cluster)
- Straightforward but can be computationally intensive with many clusters

Method 2: Within Transformation (Demeaning)

• Subtract the cluster mean from each variable:

$$\widetilde{y}_{it} = y_{it} - \overline{y}_i$$

 $\widetilde{x}_{it} = x_{it} - \overline{x}_i$

- Removes all time-invariant effects (including fixed effects)
- Regress *ỹ_{it}* on *x_{it}*

Method 3: First Differences

• Take the difference between consecutive time periods:

$$\Delta y_{it} = y_{it} - y_{i,t-1}$$
$$\Delta x_{it} = x_{it} - x_{i,t-1}$$

Also removes time-invariant effects

Spring 2025

When to Use Fixed Effects

- Use fixed effects when:
 - Observations are naturally clustered
 - You suspect unmeasured cluster-level factors affect the outcome
 - You're interested in within-cluster variation

When to Use Fixed Effects

- Use fixed effects when:
 - Observations are naturally clustered
 - You suspect unmeasured cluster-level factors affect the outcome
 - You're interested in within-cluster variation
- Common applications:
 - Students within classrooms
 - Patients within hospitals
 - Repeated measures on same subjects
 - Observations within geographic regions
 - Panel data with multiple time periods

Advantages of Fixed Effects

- Controls for all time-invariant confounders (observed or unobserved)
- Reduces omitted variable bias
- Accounts for clustered error structure
- Allows correlation between unobserved effects and predictors
- Improves quality of causal inference

Advantages of Fixed Effects

- Controls for all time-invariant confounders (observed or unobserved)
- Reduces omitted variable bias
- Accounts for clustered error structure
- Allows correlation between unobserved effects and predictors
- Improves quality of causal inference

Example: Estimating returns to education

- · Ability bias: Unobserved ability affects both education and earnings
- With panel data, individual fixed effects control for time-invariant ability

- Cannot estimate effects of variables that don't vary within clusters
 - Example: Can't estimate effect of gender with individual fixed effects

- Cannot estimate effects of variables that don't vary within clusters
 - Example: Can't estimate effect of gender with individual fixed effects
- Requires sufficient within-cluster variation
 - If predictors barely vary within clusters, estimates will be imprecise

- Cannot estimate effects of variables that don't vary within clusters
 - Example: Can't estimate effect of gender with individual fixed effects
- Requires sufficient within-cluster variation
 - If predictors barely vary within clusters, estimates will be imprecise
- Consumes many degrees of freedom with many clusters
 - Can reduce statistical power

- Cannot estimate effects of variables that don't vary within clusters
 - Example: Can't estimate effect of gender with individual fixed effects
- Requires sufficient within-cluster variation
 - If predictors barely vary within clusters, estimates will be imprecise
- Consumes many degrees of freedom with many clusters
 - Can reduce statistical power
- Not suitable for all types of dependent errors
 - Doesn't address time-varying correlation structures

- Cannot estimate effects of variables that don't vary within clusters
 - Example: Can't estimate effect of gender with individual fixed effects
- Requires sufficient within-cluster variation
 - If predictors barely vary within clusters, estimates will be imprecise
- Consumes many degrees of freedom with many clusters
 - Can reduce statistical power
- Not suitable for all types of dependent errors
 - Doesn't address time-varying correlation structures
- Magnifies measurement error bias
 - Within-transformation can increase noise-to-signal ratio

Spring 2025

1 Intraclass Correlation (ICC)

- Measures proportion of variance due to clustering
- ICC = $\frac{\sigma_{between}^2}{\sigma_{between}^2 + \sigma_{within}^2}$ Higher ICC indicates stronger clustering effect

Intraclass Correlation (ICC)

- Measures proportion of variance due to clustering
- ICC = $\frac{\sigma_{\text{between}}^2}{\sigma_{\text{between}}^2 + \sigma_{\text{within}}^2}$
- Higher ICC indicates stronger clustering effect

P-test for Fixed Effects

- Tests joint significance of fixed effects
- H₀: All fixed effects coefficients equal zero

Intraclass Correlation (ICC)

- Measures proportion of variance due to clustering
- ICC = $\frac{\sigma_{\text{between}}^2}{\sigma_{\text{between}}^2 + \sigma_{\text{within}}^2}$
- Higher ICC indicates stronger clustering effect

2 F-test for Fixed Effects

- Tests joint significance of fixed effects
- H₀: All fixed effects coefficients equal zero

Ourbin-Watson Test

• For time series autocorrelation

Intraclass Correlation (ICC)

- Measures proportion of variance due to clustering
- ICC = $\frac{\sigma_{\text{between}}^2}{\sigma_{\text{between}}^2 + \sigma_{\text{within}}^2}$
- Higher ICC indicates stronger clustering effect

2 F-test for Fixed Effects

- Tests joint significance of fixed effects
- *H*₀: All fixed effects coefficients equal zero

Ourbin-Watson Test

• For time series autocorrelation

Breusch-Pagan Lagrange Multiplier Test

- Tests for random effects
- *H*₀: No significant difference across clusters

Real-World Example

Card (1993): Returns to Education Using College Proximity

https://davidcard.berkeley.edu/papers/geo_var_schooling.pdf
Research guestion: What is the causal effect of education on earnings?

- Problem: Unobserved ability affects both education and earnings
- Solution: Use proximity to college as instrument + fixed effects for family background

Real-World Example

Card (1993): Returns to Education Using College Proximity

https://davidcard.berkeley.edu/papers/geo_var_schooling.pdf
Research question: What is the causal effect of education on earnings?

- Problem: Unobserved ability affects both education and earnings
- Solution: Use proximity to college as instrument + fixed effects for family background

Model:

 $log(wage_i) = \beta_0 + \beta_1 education_i + \gamma family_i + \varepsilon_i$

• Fixed effects for family background control for shared genetic and environmental factors

- Fixed effects address dependence in errors by modeling cluster-level effects
- Implementation options:
 - Dummy variables
 - Within transformation (demeaning)
 - First differences

- Fixed effects address dependence in errors by modeling cluster-level effects
- Implementation options:
 - Dummy variables
 - Within transformation (demeaning)
 - First differences
- Key advantages:
 - Controls for unobserved cluster-level confounders
 - Reduces omitted variable bias
 - Accounts for dependence in error structure

- Fixed effects address dependence in errors by modeling cluster-level effects
- Implementation options:
 - Dummy variables
 - Within transformation (demeaning)
 - First differences
- Key advantages:
 - Controls for unobserved cluster-level confounders
 - Reduces omitted variable bias
 - Accounts for dependence in error structure
- Key limitations:
 - Cannot estimate effects of cluster-invariant variables
 - Requires within-cluster variation
 - May reduce power

- Fixed effects address dependence in errors by modeling cluster-level effects
- Implementation options:
 - Dummy variables
 - Within transformation (demeaning)
 - First differences
- Key advantages:
 - Controls for unobserved cluster-level confounders
 - Reduces omitted variable bias
 - Accounts for dependence in error structure
- Key limitations:
 - Cannot estimate effects of cluster-invariant variables
 - Requires within-cluster variation
 - May reduce power
- Alternative: Random effects (more efficient but requires stronger assumptions)

Questions for Discussion

- In your field of study, what are some examples where fixed effects models would be appropriate?
- What are the trade-offs between using fixed effects versus including observed control variables?
- When might random effects be preferable to fixed effects?
- O How would you determine if dependent errors are a concern in your analysis?