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Introduction to Random Effects
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Linear Model Review

Recall the standard linear model:

Yi = b0 +

p∑
k=1

bkXi,k + εi

Standard assumptions:

• Linear function: E (Yi | Xi = x) = b0 +
∑

k bkxk
• Independent Errors: εi is independent of εj where i and j denote different

observations

• Homoscedasticity: The error εi has mean 0 and is independent of Xi

But what happens when observations are not independent?
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Problem: Dependent Observations

• Many real-world datasets have dependent observations

• Examples:
• Repeated measurements on the same individual
• Students within classrooms within schools
• Households within neighborhoods within cities
• Measurements over time for the same subject

• These dependencies violate the independence assumption

• Ignoring dependency leads to:
• Biased standard errors
• Invalid hypothesis tests
• Incorrect confidence intervals
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Example: Repeated Measures

Consider a study measuring the effect of red wine consumption on cholesterol:

Cholesteroli,k = b0 + b1red winei,k + εi,k

Where:

• i denotes individual

• k denotes measurement occasion

• Each individual has multiple measurements

The error term can be decomposed:

εi,k = baseline cholesteroli + δi,k

Measurements from the same individual are dependent due to the shared baseline!
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Solutions for Dependent Data

Three main approaches to handle dependent observations:
1 Fixed effects models

• Add dummy variables for each cluster

2 Random effects models (focus of this lecture)
• Model cluster effects as random variables

3 Clustered standard errors
• Adjust standard errors to account for within-cluster correlations
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Random Effects Models
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Fixed vs. Random Effects: Conceptual Difference

Fixed Effects

• Separate parameter for each cluster

• Parameters are fixed but unknown
constants

• No assumptions about distribution

• Estimates completely determined by
data

• Each cluster has its own intercept

Random Effects

• Cluster effects are random variables

• Drawn from a probability
distribution

• Typically assumed to be normally
distributed

• Shrink estimates toward the mean

• Model the variance of the cluster
effects
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Mixed Effects Model Specification

A basic mixed effects model:

Yi = b0 +
∑
k

bkXi,k + GZi + εi

Where:

• b0, bk : Fixed effects (same as regular regression)

• GZi : Random effect for cluster Zi

• Zi : Cluster to which observation i belongs

• εi : Individual error term

Assumptions:

• Gz ∼ N(0, σ2
G )

• εi ∼ N(0, σ2
ε)

• Gz is independent of εi
• Gz is independent of the covariates X
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Visualizing Random Intercepts

X

Y

Y = b0 + b1X

Y = (b0 + G2) + b1X

Y = (b0 + G3) + b1X

Gz ∼ N(0, σ2
G )

Each cluster has a different intercept but the same slope, with intercepts drawn
from a normal distribution.
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Covariance Structure in Random Effects Models

Consider the random intercept model:

Yi = b0 +
∑
k

bkXi,k + GZi + εi

Where:

• GZi ∼ N (0, σ2
G ): random intercept for group Zi

• εi ∼ N (0, σ2
ε): independent error

Then, the conditional covariance between any two observations is:

cov(Yi ,Yj | X) =

{
σ2
G if Zi = Zj (same group)

0 if Zi ̸= Zj (different groups)

Key Insight: Random intercepts induce correlation within groups, but not
between groups.
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Intra-class Correlation (ICC)

The intra-class correlation coefficient (ICC) quantifies the similarity of
responses within the same group:

ICC =
σ2
G

σ2
G + σ2

ε

Where:

• σ2
G : variance between groups (random effect)

• σ2
ε: variance within groups (residual error)

Interpretation:

• ICC = 0: No within-group correlation (no clustering)

• ICC = 1: Perfect within-group correlation (identical values within groups)

• Higher ICC ⇒ stronger clustering effect

Use in Practice: A large ICC justifies using random effects to model group-level
variability.
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Advanced Random Effects Models
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Multi-level Random Effects

We can add multiple levels of clustering:

Yi = b0 +
∑
k

bkXi,k + GZi,1 + GZi,2 + εi

Where:

• Zi,1: First level cluster (e.g., classroom)

• Zi,2: Second level cluster (e.g., school)

• Each level has its own variance component

Example hierarchies:

• Students within classrooms within schools

• Patients within doctors within hospitals

• Employees within departments within companies
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Covariance Structure with Multi-level Random Effects

For a model with two levels of clustering:

Yi = b0 +
∑
k

bkXi,k + GZi,1 + GZi,2 + εi

The covariance between observations is:

cov(Yi ,Yj) =


σ2
G ,1 + σ2

G ,2 if sharing both clusters

σ2
G ,1 if sharing only first-level cluster

σ2
G ,2 if sharing only second-level cluster

0 if sharing no clusters

This creates a complex but realistic correlation structure.
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Random Slopes

We can allow slope coefficients to vary across clusters:

Yi = b0 + (b1 + HZi )Xi,1 + GZi + εi

Where:

• b1: Fixed (average) effect of X1

• HZi : Random adjustment to the slope for cluster Zi

• GZi : Random intercept for cluster Zi

Assumptions:

• HZi ∼ N(0, σ2
H)

• HZi and GZi may be correlated

• Typically modeled as multivariate normal:(
GZi

HZi

)
∼ MVN

((
0
0

)
,

(
σ2
G σG ,H

σG ,H σ2
H

))
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Estimation and Implementation
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Estimation Methods

• Restricted Maximum Likelihood (REML)
• Most common method
• Less biased for variance components than ML
• Developed by Charles Henderson at Cornell (1948-1976)

• Bayesian estimation
• Allows specification of prior distributions
• Handles small sample sizes better
• Provides full posterior distributions
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Implementation in R

# Install and load packages

library(lme4)

library(lmerTest) # For p-values

# Random intercept model

model1 <- lmer(Cholesterol ~ Wine + (1|Individual),

data = cholesterol_data)

# Random slope model

model2 <- lmer(Cholesterol ~ Wine + (Wine|Individual),

data = cholesterol_data)

# Multi-level model (e.g., students in schools)

model3 <- lmer(Score ~ Treatment +

(1|School) + (1|School:Class),

data = student_data)

# Model summary

summary(model1)
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Interpreting Model Output

Linear mixed model fit by REML [’lmerMod’]

Formula: Cholesterol ~ Wine + (1 | Individual)

REML criterion at convergence: 423.5

Scaled residuals:

Min 1Q Median 3Q Max

-2.4563 -0.5972 0.0321 0.6245 2.3301

Random effects:

Groups Name Variance Std.Dev.

Individual (Intercept) 12.85 3.58

Residual 4.21 2.05

Number of obs: 80, groups: Individual, 40

Fixed effects:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 195.32 0.83 235.21 < 2e-16 ***

Wine -1.45 0.24 -6.04 < 2e-16 ***
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When to Use Random Effects
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When to Use Random Effects

Recommended when:

• Clusters are randomly sampled from a larger population

• You aim to generalize to other clusters not in the sample

• You expect different clusters if the study were repeated

• Cluster effects are uncorrelated with covariates

• You have many clusters with few observations per cluster

Examples:

• Education Study: Measuring the effect of a new curriculum across 100
randomly selected schools to generalize results to all schools in the country

• Healthcare: Analyzing recovery times across 50 hospitals to quantify
hospital-to-hospital variability in patient care

• Multicenter Trial: Estimating drug effectiveness in a trial conducted across
many clinics, assuming clinic-specific effects are random

• Corporate Productivity: Modeling department-level variation in
productivity across a firm with 60 small departments
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When to Use Fixed Effects

Recommended when:
• Clusters are unique and not sampled from a larger population
• The identity of each cluster is substantively important
• Cluster effects may be correlated with covariates
• You have few clusters with many observations per cluster
• You’re not interested in generalizing to other clusters

Examples:
• Policy Evaluation: Estimating the impact of tax reform on GDP in a fixed

set of EU countries — inference is only about these specific countries
• Leadership Impact: Measuring how CEO changes affect productivity in 20

large firms over time — firm identity is critical, and CEO changes may
correlate with firm covariates

• Elite Education: Analyzing student outcomes in five elite schools where the
schools are of primary interest

• Longitudinal Panels: Estimating wage dynamics using repeated
observations from the same individuals — controls for unobserved,
time-invariant individual heterogeneity

Key Point: Fixed effects control for cluster-level confounders but do not allow
generalization to new units.
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