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Introduction to Random Effects



Linear Model Review

Recall the standard linear model:

P
Y: = bo + Z b Xk + €
k=1

Standard assumptions:
® Linear function: E(Y; | Xj=x) = by + >, bixk

® Independent Errors: ¢; is independent of €; where i and j denote different
observations

® Homoscedasticity: The error £; has mean 0 and is independent of X;

But what happens when observations are not independent?
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Problem: Dependent Observations

® Many real-world datasets have dependent observations

® Examples:
® Repeated measurements on the same individual
® Students within classrooms within schools
® Households within neighborhoods within cities
® Measurements over time for the same subject
[}

These dependencies violate the independence assumption
® Ignoring dependency leads to:

® Biased standard errors
® Invalid hypothesis tests
® Incorrect confidence intervals
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Example: Repeated Measures
Consider a study measuring the effect of red wine consumption on cholesterol:

Cholesterol; = by + bired wine; x + € «

Where:
® | denotes individual
® k denotes measurement occasion

® Each individual has multiple measurements

The error term can be decomposed:
€ik = baseline cholesterol; + §; «

Measurements from the same individual are dependent due to the shared baseline!
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Solutions for Dependent Data

Three main approaches to handle dependent observations:
@ Fixed effects models
® Add dummy variables for each cluster
@ Random effects models (focus of this lecture)
® Model cluster effects as random variables
© Clustered standard errors
® Adjust standard errors to account for within-cluster correlations
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Random Effects Models



Fixed vs. Random Effects: Conceptual Difference

Fixed Effects

Separate parameter for each cluster

Parameters are fixed but unknown
constants

No assumptions about distribution

Estimates completely determined by
data

Each cluster has its own intercept

Random Effects

Cluster effects are random variables

Drawn from a probability
distribution

Typically assumed to be normally
distributed

Shrink estimates toward the mean

Model the variance of the cluster
effects
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Mixed Effects Model Specification

A basic mixed effects model:

Y: = by + Z by Xi i + Gz, +¢i
k
Where:
® by, by: Fixed effects (same as regular regression)
® Gz: Random effect for cluster Z;
® Z;: Cluster to which observation i belongs

® c;: Individual error term

Assumptions:
* G, ~ N(0,02)
® ¢ ~ N(0,0?)
® G, is independent of ¢;

® G, is independent of the covariates X
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Visualizing Random Intercepts

YZ(bo-‘er)-‘rle
Y = by + b1 X

Y:(bo+G3)+b1X

N

G, ~ N(0,0%)

X

Each cluster has a different intercept but the same slope, with intercepts drawn
from a normal distribution.
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Covariance Structure in Random Effects Models

Consider the random intercept model:
Y: = by + Z by Xi i + Gz +¢i
k

Where:
® Gz ~ N(0,0%): random intercept for group Z;
® ¢, ~ N(0,02): independent error

Then, the conditional covariance between any two observations is:

2 2 =2
cov(Yi, Y; | X) = ¢ | 4 (s?me group)
0 if Zj# Z (different groups)

Key Insight: Random intercepts induce correlation within groups, but not
between groups.
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Intra-class Correlation (ICC)

The intra-class correlation coefficient (ICC) quantifies the similarity of
responses within the same group:

2
IcC= 26—
o¢ +0¢
Where:

® oZ: variance between groups (random effect)
2

® ¢gZ: variance within groups (residual error)

Interpretation:
® |CC = 0: No within-group correlation (no clustering)
® |CC = 1: Perfect within-group correlation (identical values within groups)
® Higher ICC = stronger clustering effect

Use in Practice: A large ICC justifies using random effects to model group-level
variability.
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Advanced Random Effects Models



Multi-level Random Effects

We can add multiple levels of clustering:

Y: = by + Z by Xi i + GZiJ + GZ,.’2 + &
k
Where:
® Z;1: First level cluster (e.g., classroom)
® Z;»: Second level cluster (e.g., school)

® Each level has its own variance component

Example hierarchies:
® Students within classrooms within schools
® Patients within doctors within hospitals

® Employees within departments within companies
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Covariance Structure with Multi-level Random Effects

For a model with two levels of clustering:

Yi=bo+ Y bXik+ Gz, + Gz, +ei
k

The covariance between observations is:

0%, + 0%, if sharing both clusters

cov(Yi, V) = 026,1 if sharing only first-level cluster
! 0%, if sharing only second-level cluster
0 if sharing no clusters

This creates a complex but realistic correlation structure.
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Random Slopes
We can allow slope coefficients to vary across clusters:
Yi=bo+ (b1 + Hz)Xi1 + Gz + ¢

Where:
® b Fixed (average) effect of Xi
® Hz: Random adjustment to the slope for cluster Z;
® Gz: Random intercept for cluster Z;

Assumptions:
° HZi ~ N(O7JI2-I)
® Hz and Gz may be correlated

® Typically modeled as multivariate normal:

GZ,- 0 0’% OG,H
R (ORI
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Estimation and Implementation



Estimation Methods

® Restricted Maximum Likelihood (REML)

® Most common method
® |ess biased for variance components than ML
® Developed by Charles Henderson at Cornell (1948-1976)

® Bayesian estimation

® Allows specification of prior distributions
® Handles small sample sizes better
® Provides full posterior distributions
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Implementation in R

# Install and load packages
library(1lme4)
library(lmerTest) # For p-values

# Random intercept model
modell <- lmer(Cholesterol ~ Wine + (1|Individual),
data = cholesterol_data)

# Random slope model
model2 <- lmer(Cholesterol ~ Wine + (Wine|Individual),
data = cholesterol_data)

# Multi-level model (e.g., students in schools)
model3 <- lmer(Score ~ Treatment +
(1|School) + (1|School:Class),
data = student_data)

# Model summary

summary (modell)
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Interpreting Model Output

Linear mixed model fit by REML [’lmerMod’]
Formula: Cholesterol ~ Wine + (1 | Individual)

REML criterion at convergence: 423.5
Scaled residuals:

Min 1Q Median 3Q Max
-2.4563 -0.5972 0.0321 0.6245 2.3301

Random effects:

Groups Name Variance Std.Dev.
Individual (Intercept) 12.85 3.58
Residual 4.21 2.05

Number of obs: 80, groups: Individual, 40

Fixed effects:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 195.32 0.83 235.21 < 2e-16 *x**
Wine -1.45 0.24 -6.04 < 2e-16 *x*x
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When to Use Random Effects



When to Use Random Effects

Recommended when:
® (Clusters are randomly sampled from a larger population
® You aim to generalize to other clusters not in the sample

® You expect different clusters if the study were repeated

Cluster effects are uncorrelated with covariates

You have many clusters with few observations per cluster

Examples:

® Education Study: Measuring the effect of a new curriculum across 100
randomly selected schools to generalize results to all schools in the country

® Healthcare: Analyzing recovery times across 50 hospitals to quantify
hospital-to-hospital variability in patient care

® Multicenter Trial: Estimating drug effectiveness in a trial conducted across
many clinics, assuming clinic-specific effects are random

® Corporate Productivity: Modeling department-level variation in
productivity across a firm with 60 small departments
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When to Use Fixed Effects

Recommended when:

Clusters are unique and not sampled from a larger population
The identity of each cluster is substantively important
Cluster effects may be correlated with covariates

You have few clusters with many observations per cluster

® You're not interested in generalizing to other clusters

Examples:
® Policy Evaluation: Estimating the impact of tax reform on GDP in a fixed
set of EU countries — inference is only about these specific countries

® Leadership Impact: Measuring how CEO changes affect productivity in 20
large firms over time — firm identity is critical, and CEO changes may
correlate with firm covariates

® Elite Education: Analyzing student outcomes in five elite schools where the
schools are of primary interest

® Longitudinal Panels: Estimating wage dynamics using repeated
observations from the same individuals — controls for unobserved,
time-invariant individual heterogeneity

Key Point: Fixed effects control for cluster-level confounders but do not allow
generalization to new units.
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