Lecture 24: Random Effects Models

Spring 2025

Outline

- Introduction to Random Effects
- Random Effects Models
- Advanced Random Effects Models
- Estimation and Implementation
- **5** When to Use Random Effects

Spring 2025 2 / 24

Introduction to Random Effects

Linear Model Review

Recall the standard linear model:

$$Y_i = b_0 + \sum_{k=1}^{p} b_k X_{i,k} + \varepsilon_i$$

Standard assumptions:

- Linear function: $E(Y_i \mid \mathbf{X_i} = \mathbf{x}) = b_0 + \sum_k b_k x_k$
- Independent Errors: ε_i is independent of ε_j where i and j denote different observations
- Homoscedasticity: The error ε_i has mean 0 and is independent of X_i

But what happens when observations are not independent?

z 2025 4 / 24

BTRY 6020 Spring 2025

Problem: Dependent Observations

- Many real-world datasets have dependent observations
- Examples:
 - Repeated measurements on the same individual
 - Students within classrooms within schools
 - Households within neighborhoods within cities
 - Measurements over time for the same subject
- These dependencies violate the independence assumption
- Ignoring dependency leads to:
 - Biased standard errors
 - Invalid hypothesis tests
 - Incorrect confidence intervals

Spring 2025 5 / 24

Example: Repeated Measures

Consider a study measuring the effect of red wine consumption on cholesterol:

Cholesterol_{i,k} =
$$b_0 + b_1$$
red wine_{i,k} + $\varepsilon_{i,k}$

Where:

- i denotes individual
- k denotes measurement occasion
- Each individual has multiple measurements

The error term can be decomposed:

$$\varepsilon_{i,k} = \mathsf{baseline} \; \mathsf{cholesterol}_i + \delta_{i,k}$$

Measurements from the same individual are dependent due to the shared baseline!

Solutions for Dependent Data

Three main approaches to handle dependent observations:

- Fixed effects models
 - · Add dummy variables for each cluster
- Random effects models (focus of this lecture)
 - Model cluster effects as random variables
- Clustered standard errors
 - Adjust standard errors to account for within-cluster correlations

ing 2025 7 / 24

Random Effects Models

Fixed vs. Random Effects: Conceptual Difference

Fixed Effects

- Separate parameter for each cluster
- Parameters are fixed but unknown constants
- No assumptions about distribution
- Estimates completely determined by data
- Each cluster has its own intercept

Random Effects

- Cluster effects are random variables
- Drawn from a probability distribution
- Typically assumed to be normally distributed
- Shrink estimates toward the mean
- Model the variance of the cluster effects

ng 2025 9 / 24

BTRY 6020 Spring 2025 9

Mixed Effects Model Specification

A basic mixed effects model:

$$Y_i = b_0 + \sum_k b_k X_{i,k} + G_{Z_i} + \varepsilon_i$$

Where:

- b_0, b_k : Fixed effects (same as regular regression)
- G_{Zi}: Random effect for cluster Z_i
- Z_i: Cluster to which observation i belongs
- ε_i: Individual error term

Assumptions:

- $G_z \sim N(0, \sigma_C^2)$
- $\varepsilon_i \sim N(0, \sigma_s^2)$
- G_z is independent of ε_i
- G_z is independent of the covariates X

10/24

BTRY 6020 Spring 2025

Visualizing Random Intercepts

Each cluster has a different intercept but the same slope, with intercepts drawn from a normal distribution.

11/24

Covariance Structure in Random Effects Models

Consider the random intercept model:

$$Y_i = b_0 + \sum_k b_k X_{i,k} + G_{Z_i} + \varepsilon_i$$

Where:

- $G_{Z_i} \sim \mathcal{N}(0, \sigma_G^2)$: random intercept for group Z_i
- $\varepsilon_i \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$: independent error

Then, the conditional covariance between any two observations is:

$$cov(Y_i, Y_j \mid \mathbf{X}) = \begin{cases} \sigma_G^2 & \text{if } Z_i = Z_j \\ 0 & \text{if } Z_i \neq Z_j \end{cases} \text{ (same groups)}$$

Key Insight: Random intercepts induce correlation within groups, but not between groups.

> Spring 2025 12/24

Intra-class Correlation (ICC)

The intra-class correlation coefficient (ICC) quantifies the similarity of responses within the same group:

$$ICC = \frac{\sigma_G^2}{\sigma_G^2 + \sigma_\varepsilon^2}$$

Where:

- σ_C^2 : variance between groups (random effect)
- σ_c^2 : variance within groups (residual error)

Interpretation:

- ICC = 0: No within-group correlation (no clustering)
- ICC = 1: Perfect within-group correlation (identical values within groups)
- Higher ICC ⇒ stronger clustering effect

Use in Practice: A large ICC justifies using random effects to model group-level variability.

> BTRY 6020 Spring 2025

Advanced Random Effects Models

Multi-level Random Effects

We can add multiple levels of clustering:

$$Y_i = b_0 + \sum_k b_k X_{i,k} + G_{Z_{i,1}} + G_{Z_{i,2}} + \varepsilon_i$$

Where:

- Z_{i,1}: First level cluster (e.g., classroom)
- Z_{i,2}: Second level cluster (e.g., school)
- Each level has its own variance component

Example hierarchies:

- Students within classrooms within schools
- Patients within doctors within hospitals
- Employees within departments within companies

15/24

BTRY 6020 Spring 2025

Covariance Structure with Multi-level Random Effects

For a model with two levels of clustering:

$$Y_i = b_0 + \sum_k b_k X_{i,k} + G_{Z_{i,1}} + G_{Z_{i,2}} + \varepsilon_i$$

The covariance between observations is:

$$\operatorname{cov}(Y_i,Y_j) = \begin{cases} \sigma_{G,1}^2 + \sigma_{G,2}^2 & \text{if sharing both clusters} \\ \sigma_{G,1}^2 & \text{if sharing only first-level cluster} \\ \sigma_{G,2}^2 & \text{if sharing only second-level cluster} \\ 0 & \text{if sharing no clusters} \end{cases}$$

This creates a complex but realistic correlation structure.

16 / 24

BTRY 6020 Spring 2025

Random Slopes

We can allow slope coefficients to vary across clusters:

$$Y_i = b_0 + (b_1 + H_{Z_i})X_{i,1} + G_{Z_i} + \varepsilon_i$$

Where:

- b₁: Fixed (average) effect of X₁
- H_{Zi}: Random adjustment to the slope for cluster Z_i
- G_{Z_i} : Random intercept for cluster Z_i

Assumptions:

- $H_{7:} \sim N(0, \sigma_H^2)$
- H_Z: and G_Z: may be correlated
- Typically modeled as multivariate normal:

$$\begin{pmatrix} G_{Z_i} \\ H_{Z_i} \end{pmatrix} \sim MVN \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_G^2 & \sigma_{G,H} \\ \sigma_{G,H} & \sigma_H^2 \end{pmatrix} \end{pmatrix}$$

Spring 2025 17/24

Estimation and Implementation

Estimation Methods

- Restricted Maximum Likelihood (REML)
 - Most common method
 - Less biased for variance components than ML
 - Developed by Charles Henderson at Cornell (1948-1976)

BTRY 6020

- Bayesian estimation
 - Allows specification of prior distributions
 - Handles small sample sizes better
 - Provides full posterior distributions

Spring 2025 19 / 24

Implementation in R

```
# Install and load packages
library(lme4)
library(lmerTest) # For p-values
# Random intercept model
model1 <- lmer(Cholesterol ~ Wine + (1|Individual),
               data = cholesterol_data)
# Random slope model
model2 <- lmer(Cholesterol ~ Wine + (Wine|Individual),</pre>
               data = cholesterol data)
# Multi-level model (e.g., students in schools)
model3 <- lmer(Score ~ Treatment +
              (1|School) + (1|School:Class),
              data = student data)
# Model summary
```

summary (model1)

20 / 24

Interpreting Model Output

```
Linear mixed model fit by REML ['lmerMod']
Formula: Cholesterol ~ Wine + (1 | Individual)
REML criterion at convergence: 423.5
```

Scaled residuals:

```
Min 1Q Median 3Q Max -2.4563 -0.5972 0.0321 0.6245 2.3301
```

Random effects:

```
Groups Name Variance Std.Dev.
Individual (Intercept) 12.85 3.58
Residual 4.21 2.05
```

Number of obs: 80, groups: Individual, 40

Fixed effects:

BTRY 6020 Spring 2025 21 / 24

When to Use Random Effects

When to Use Random Effects

Recommended when:

- Clusters are randomly sampled from a larger population
- You aim to generalize to other clusters not in the sample
- You expect different clusters if the study were repeated
- Cluster effects are uncorrelated with covariates
- You have many clusters with few observations per cluster

Examples:

- Education Study: Measuring the effect of a new curriculum across 100 randomly selected schools to generalize results to all schools in the country
- Healthcare: Analyzing recovery times across 50 hospitals to quantify hospital-to-hospital variability in patient care
- Multicenter Trial: Estimating drug effectiveness in a trial conducted across many clinics, assuming clinic-specific effects are random
- Corporate Productivity: Modeling department-level variation in productivity across a firm with 60 small departments

BTRY 6020 Spring 2025

When to Use Fixed Effects

Recommended when:

- Clusters are unique and not sampled from a larger population
- The identity of each cluster is substantively important
- Cluster effects may be correlated with covariates
- You have few clusters with many observations per cluster
- You're not interested in generalizing to other clusters

Examples:

- Policy Evaluation: Estimating the impact of tax reform on GDP in a fixed set of EU countries — inference is only about these specific countries
- Leadership Impact: Measuring how CEO changes affect productivity in 20 large firms over time firm identity is critical, and CEO changes may correlate with firm covariates
- **Elite Education:** Analyzing student outcomes in five elite schools where the schools are of primary interest
- Longitudinal Panels: Estimating wage dynamics using repeated observations from the same individuals — controls for unobserved, time-invariant individual heterogeneity

Key Point: Fixed effects control for cluster-level confounders but do not allow generalization to new units.

BTRY 6020 Spring 2025

24 / 24