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Linear Model: Assumptions and Interpretations
Model:

Y = Xβ + ε where ε represents random errors.

Key Assumptions:

Linearity: The expected value of Y is a linear function of X .

Independence: The errors εi are independent across observations.

Homoscedasticity: The errors have constant variance: Var(εi ) = σ2

for all i .

Normality: The errors εi are normally distributed (required mainly
for valid inference, not for point estimates).

Low Multicollinearity: Predictors should not be nearly perfectly
correlated (to ensure stable estimation of β).

Notes:

Normality is not required for estimating β, but important for
hypothesis tests.

Multicollinearity does not bias estimates, but increases their variance.
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Consequences of Assumption Violations
Reminder: Under the Gauss-Markov assumptions, OLS provides the Best
Linear Unbiased Estimator (BLUE).
If assumptions are violated:

Linearity violation:
→ Model is misspecified ⇒ Biased estimates, poor predictions.

Independence violation:
→ Standard errors are underestimated ⇒ Inference becomes

invalid (e.g., misleading p-values).

Homoscedasticity violation:
→ Estimates remain unbiased but are inefficient ⇒ Larger

standard errors, invalid usual inference (need robust methods).

Normality violation:
→ OLS estimates are still unbiased and consistent, but

small-sample inference (e.g., t-tests, F-tests) may be invalid.

Multicollinearity:
→ Estimates remain unbiased, but coefficients are highly sensitive

to data perturbations ⇒ Inflated standard errors, unstable predictions.
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Checking Model Assumptions

Visual Diagnostics:

Residual plots:
Check for patterns ⇒ Linearity and homoscedasticity.

Q-Q plots (Quantile-Quantile plots):
Check if residuals align with a normal distribution.

Statistical Tests:

Durbin-Watson test:
Detect autocorrelation in residuals (independence violation).

Variance Inflation Factor (VIF):
Quantify multicollinearity among predictors.

Note: Always combine visual inspection and statistical tests for robust
diagnostics.
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Multiple Linear Regression: Fundamentals

Model:
Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip + εi

where εi are random errors with mean 0 and constant variance σ2.

Matrix Form:
Y = Xβ + ε

Least Squares Estimation:

β̂ = (XTX)−1XTY

(provided that XTX is invertible)

Fitted Values:
Ŷ = Xβ̂

Objective: Minimize the residual sum of squares (RSS):
∑n

i=1(Yi − Ŷi )
2.
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Multiple Linear Regression: Interpretation

Coefficient βj :
Expected change in Y for a one-unit increase in Xj , holding all

other predictors constant.

Coefficient of Determination (R2):
Proportion of variance in Y explained by the model.

R2 = 1− RSS

TSS
Adjusted R2:

Adjusts R2 for the number of predictors.
Penalizes overfitting.

F -test:
Tests the joint hypothesis H0 : β1 = β2 = · · · = βp = 0.

t-tests:
Test if individual βj significantly differs from zero.
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Categorical Variables and Interactions
Handling Categorical Variables:

Dummy variables:

Xij =

{
1 if observation i belongs to category j

0 otherwise

Reference category:
One category is omitted to avoid the ”dummy variable trap” (perfect
multicollinearity).

Modeling Interactions:

Include products of predictors to allow non-additive effects.

Interaction model:

Y = β0 + β1X1 + β2X2 + β3(X1 × X2) + ε

Interpretation of β3:
β3 measures how the effect of X1 on Y changes depending on the

level of X2.
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Sampling Distributions: Key Concepts
Definition:

The sampling distribution of a statistic is the probability distribution
of that statistic across all possible random samples from the
population.

Examples:

The sample mean X̄ has a normal distribution (by the Central Limit
Theorem) when n is large.

The t-statistic follows a t-distribution under the null hypothesis (for
small samples).

Importance:

Fundamental for building confidence intervals and conducting
hypothesis tests.
Explains the variability of estimators from sample to sample.

Key Idea:

Even though a parameter (like µ) is fixed, the statistic (like X̄ ) is
random across samples.

Nayel Bettache Wrap up 8 / 33



Central Limit Theorem (CLT)
Statement:

Let X1,X2, . . . ,Xn be i.i.d. random variables with mean µ and
variance σ2 < ∞.

Then, as n → ∞:
√
n
(
X̄ − µ

) d−→ N(0, σ2)

Equivalently:

X̄
d−→ N

(
µ,

σ2

n

)
Implications:

The sampling distribution of X̄ becomes approximately normal,
regardless of the original distribution.

Justifies normal-based inference (confidence intervals, hypothesis
tests) for large n.

Note:

Convergence can be slower for heavy-tailed or skewed distributions.
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Important Sampling Distributions

When population variance σ2 is known (or n large):

Sample mean:

X̄ ∼ N

(
µ,

σ2

n

)
Sample proportion:

p̂ ∼ N

(
p,

p(1− p)

n

)
(valid for large n by the Central Limit Theorem)

Difference of two sample means:

X̄1 − X̄2 ∼ N

(
µ1 − µ2,

σ2
1

n1
+

σ2
2

n2

)
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Important Sampling Distributions II
When population variance σ2 is unknown:

Student’s t-distribution:
If σ is unknown and replaced by the sample standard deviation s, then

X̄ − µ

s/
√
n

∼ tn−1

where tn−1 is a t-distribution with n − 1 degrees of freedom.

For variance-related statistics:

Chi-square distribution:

(n − 1)s2

σ2
∼ χ2

n−1

(used in confidence intervals and tests for variance)

F -distribution:
Variance1/σ

2
1

Variance2/σ2
2

∼ Fd1,d2

(used for comparing two variances)
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Confidence Intervals: Fundamentals
General form:

Point estimate± (Critical value× Standard error)

Correct Interpretation:

If we repeated the sampling procedure infinitely many times,
approximately 95% of the constructed confidence intervals would
contain the true population parameter.

Precision vs Confidence:

Wider intervals: Higher confidence, but lower precision.

Narrower intervals: Higher precision, but lower confidence.

Increasing the sample size n leads to narrower intervals without
sacrificing confidence.

Common Misinterpretation (WRONG):

It is incorrect to say that there is a 95% probability that the true
parameter lies inside a realized interval.

Once the interval is calculated, the parameter is either inside it or not.
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Common Confidence Intervals
Population Mean (Known Variance σ2):

x̄ ± zα/2
σ√
n

(when σ known, zα/2 from standard normal distribution)

Population Mean (Unknown Variance):

x̄ ± tα/2, n−1
s√
n

(when σ unknown, s sample standard deviation, t-distribution with n − 1
degrees of freedom)

Population Proportion:

p̂ ± zα/2

√
p̂(1− p̂)

n

(for large n, by Central Limit Theorem)
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Confidence Intervals for Regression Coefficients

Confidence interval for each regression coefficient βj :

β̂j ± tα/2, n−p−1 × SE (β̂j)

where:

SE (β̂j) =
√
σ̂2 [(XTX)−1]jj

σ̂2 =
1

n − p − 1

∑n
i=1(Yi − Ŷi )

2 (residual variance estimate)

Degrees of freedom: n − p − 1 (n: observations, p: predictors)

Notes:

t-distribution used because σ2 is unknown.[
(XTX)−1

]
jj
is the j-th diagonal element of the inverse Gram matrix,

capturing the variability of β̂j .
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Hypothesis Testing Framework
Key Elements:

Null Hypothesis (H0):
Statement of no effect, no difference, or status quo. (Assumed true
at the start.)

Alternative Hypothesis (H1 or HA): Statement representing an
effect, difference, or deviation from H0.

Test Statistic: Quantity computed from sample data, with a known
distribution under H0.

p-value: Probability, assuming H0 is true, of observing a test statistic
as extreme or more extreme than the one observed.

Significance Level (α): Pre-specified threshold (commonly 0.05) for
deciding whether to reject H0.

Decision Rule:

Reject H0 if p-value ≤ α.

Fail to reject H0 if p-value > α.
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Types of Errors and Power

H0 True H0 False

Reject H0 Type I error (α) Correct decision (Power)

Fail to reject H0 Correct decision Type II error (β)

Key Concepts:

Type I error (α): Rejecting H0 when it is actually true (false
positive).

Type II error (β): Failing to reject H0 when it is actually false (false
negative).

Power (1− β): Probability of correctly rejecting a false H0.

Factors that Increase Power:

Larger sample size (n).

Larger effect size (true difference from H0).

Higher significance level (α).

Lower variability (smaller σ2).
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Common Hypothesis Tests

One-Sample t-Test:

t =
x̄ − µ0

s/
√
n

∼ tn−1

Testing H0 : µ = µ0. Requires approximate normality of the population.

Two-Sample t-Test (Independent Samples):

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

∼ tdf

Testing H0 : µ1 = µ2. Assumes independence between samples. Equal
variance assumption may or may not be made (Welch’s test if variances
unequal).
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Common Hypothesis Tests II

Paired t-Test:

t =
d̄ − µd

sd/
√
n

∼ tn−1

Testing H0 : µd = 0 for the mean difference between paired observations.
Assumes differences are approximately normally distributed.

F -Test (One-Way ANOVA):

F =
MSbetween
MSwithin

∼ Fk−1,n−k

Testing H0: All group means are equal.

k = number of groups

MSbetween = mean square between groups

MSwithin = mean square within groups (residuals)
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Hypothesis Tests in Regression: t-test

t-Test for Individual Coefficients:

t =
β̂j − βj0

SE (β̂j)
∼ tn−p−1

Testing:
H0 : βj = βj0 vs. H1 : βj ̸= βj0

(Typically, βj0 = 0 to test if a predictor is useful.)
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Hypothesis Tests in Regression: F-test
F -Test for Overall Model Significance:

F =
MSR

MSE
=

Regression Sum of Squares/p

Residual Sum of Squares/(n − p − 1)

Testing:

H0 : β1 = β2 = · · · = βp = 0 vs. H1 : At least one βj ̸= 0

MSR: Mean Square Regression

MSE : Mean Square Error (Residual)

p: Number of predictors

Partial F -Test:

Compares two nested models (a simpler model inside a more complex
one).

Tests if a subset of predictors improves the model significantly.
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The Multiple Testing Problem
Key Issue:

When performing multiple hypothesis tests (m tests), the probability
of making at least one Type I error increases.

Definitions:

Family-Wise Error Rate (FWER): Probability of making at least
one Type I error across all tests.

False Discovery Rate (FDR): Expected proportion of Type I errors
among all rejections.

Without Correction (Independent Tests):

FWER = 1− (1− α)m, where:

α = significance level for each individual test

m = number of independent tests
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The Multiple Testing Problem II

Example:

m = 20 tests, α = 0.05 per test

FWER ≈ 1− (1− 0.05)20 ≈ 0.64

Solutions (briefly):

FWER control: Bonferroni correction, Holm’s procedure (very
conservative).

FDR control: Benjamini-Hochberg procedure (more powerful, used
in large-scale testing).
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Multiple Testing Correction Methods

Bonferroni Correction (Controls FWER):

αcorrected =
α

m

Test each hypothesis at level α/m.

Very simple, but conservative (especially when m is large).

Holm-Bonferroni Method (Controls FWER, Less Conservative):

1 Order p-values: p(1) ≤ p(2) ≤ · · · ≤ p(m).

2 For each i , compare p(i) to
α

m − i + 1
:

If p(i) is significant, reject H0(i) and continue.
Stop at the first non-significant p-value.

Less conservative than Bonferroni while still controlling FWER.
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Multiple Testing Correction Methods II

Benjamini-Hochberg Procedure (Controls FDR):

1 Order p-values: p(1) ≤ p(2) ≤ · · · ≤ p(m).

2 Find the largest k such that:

p(k) ≤
k

m
α

3 Reject all H0(i) for i = 1, 2, . . . , k .

Controls the expected proportion of false discoveries among all
rejections (FDR).

Widely used in large-scale testing (e.g., genomics, machine learning).
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Practical Considerations in Multiple Testing
Key Trade-Off:

Stricter corrections (e.g., Bonferroni) reduce false positives (Type I
errors) but increase false negatives (Type II errors).
Balancing error types depends on research priorities.

Independence Assumption:

Many multiple testing corrections assume independent or weakly
dependent tests.
Violations (strong correlations) may affect FWER/FDR control.

Context Matters:

FWER control: Prefer when false positives are very costly (e.g.,
clinical trials, regulatory decisions).
FDR control: Prefer when discovery is more important than strict
certainty (e.g., genomics, exploratory research).

Reporting Standards:
Always report:

The correction method used (e.g., Bonferroni, BH procedure).
The type of error rate controlled (FWER or FDR).
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Understanding Heteroskedasticity
Definitions:

Homoskedasticity:

Var(εi ) = σ2 for all i

The variance of the errors is constant across observations.

Heteroskedasticity:

Var(εi ) = σ2
i varies with i

The variance of the errors differs across observations.

Consequences of Heteroskedasticity:

OLS estimators remain unbiased but are no longer efficient.

Estimated standard errors are biased → Hypothesis tests and
confidence intervals are invalid.

Predictions have suboptimal (non-minimal) variance.

Violates a Gauss-Markov assumption: OLS is no longer the Best
Linear Unbiased Estimator (BLUE).
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Detecting Heteroskedasticity
Visual Methods:

Residual vs. Fitted Values Plot: Look for patterns — a funnel
shape suggests heteroskedasticity.

Residual vs. Predictor Plots: Examine key predictors individually
for changing spread.

Scale-Location Plot: Plot
√
|ei | versus ŷi to better detect

non-constant variance.

Statistical Tests:
Breusch-Pagan Test:

Regress squared residuals on predictors.
H0: Homoskedasticity (constant variance).

White Test:
General test allowing for nonlinear forms of heteroskedasticity.
H0: Homoskedasticity.

Goldfeld-Quandt Test:
Test for monotonic changes in variance across ordered data.
Compare variance across different subsamples.
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Addressing Heteroskedasticity
Transformation Approaches:

Apply a transformation to the response variable to stabilize variance
(e.g., log, square root).

Box-Cox Transformation:

y (λ) =


yλ − 1

λ
if λ ̸= 0

log(y) if λ = 0

where λ is estimated from the data.

Weighted Least Squares (WLS):

Minimize a weighted sum of squared residuals:

n∑
i=1

wi (yi − xTi β)2

Use weights wi = 1/σ̂2
i , giving more importance to observations with

smaller variance.
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Addressing Heteroskedasticity II

Robust Standard Errors:

Use heteroskedasticity-consistent (HC) standard errors (e.g., White’s
estimator).

Coefficient estimates stay the same; only the standard errors are
adjusted for valid inference.

Summary:

If you care about improving model fit → use transformations or WLS.

If you mainly care about valid inference → use robust standard errors.
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Bootstrapping: Fundamentals
Basic Principle:

Approximate the sampling distribution of a statistic by resampling
from the observed data.

Does not require assumptions about the underlying population
distribution.

Bootstrap Process:

Draw a random sample with replacement of size n from the
observed dataset.

Compute the statistic of interest (e.g., mean, median, regression
coefficient) from the resample.

Repeat the process a large number of times (e.g., 1000 or more).

Use the distribution of bootstrap replicates to estimate:

Standard error
Confidence intervals
Bias (if needed)
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Bootstrapping: Advantages

Advantages of Bootstrapping:

Distribution-free: No assumptions about the form of the population.

Handles complex statistics for which theoretical formulas are difficult
or unknown.

Easy to implement with modern computing.
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Types of Bootstrap Methods

Nonparametric Bootstrap:

Resample directly with replacement from the observed data.

No assumptions about the underlying population.

Block Bootstrap:

Used when data are dependent (e.g., time series).

Resample blocks of consecutive observations to preserve local
dependence structure.

Residual Bootstrap (for Regression Models):

Assumes the model form is correct but allows for random errors.

Process:
1 Fit the regression model and calculate residuals.
2 Resample residuals and generate new response values: ŷi + e∗i .
3 Refit the model using these new responses.
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Bootstrap Confidence Intervals
Idea:

Use the empirical distribution of bootstrap estimates to construct
confidence intervals.

No assumptions about normality or standard errors needed.

Percentile Method:

Take the α/2 and 1− α/2 quantiles from the bootstrap distribution.

Confidence interval: [
θ̂∗(α/2), θ̂

∗
(1−α/2)

]
Basic Bootstrap Method:

Symmetric adjustment around the original estimate θ̂.

Confidence interval: [
2θ̂ − θ̂∗(1−α/2), 2θ̂ − θ̂∗(α/2)

]
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