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Cross-Validation: Principles
Goal:

Estimate a model’s ability to generalize to unseen data.
Helps select models, tune hyperparameters, and assess prediction
accuracy.

Addresses:

Overfitting: Avoid models that fit training data too closely.
Model selection: Compare and select among candidate models.
Performance estimation: Estimate out-of-sample error.

Basic Cross-Validation Procedure:
1 Split data into training and validation sets.
2 Train the model on the training set.
3 Evaluate model performance on the validation set.

Common Evaluation Metrics:

Regression: MSE, RMSE, MAE, R2

Classification: Accuracy, AUC, F1-score, Log-loss
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Cross-Validation Methods
Holdout Method:

Single split (e.g., 70% training, 30% test).
Simple but performance estimate has high variance.

k-Fold Cross-Validation:
1 Split data into k roughly equal parts (folds).
2 For each fold:

Train model on the k − 1 other folds.
Validate on the held-out fold.

3 Average the performance across all k runs.

Lower variance than holdout; good bias-variance trade-off.

Leave-One-Out Cross-Validation (LOOCV):

Special case of k-fold with k = n.
Each data point serves as its own validation set.
Very low bias, but computationally expensive and high variance.

Repeated k-Fold:

Run k-fold cross-validation multiple times with different random
partitions.
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Applications and Considerations
Hyperparameter Tuning: Nested Cross-Validation

Avoids data leakage during model selection.
Inner loop: Tune hyperparameters (e.g., regularization strength, tree
depth).
Outer loop: Estimate generalization performance.

Choosing k in k-Fold CV: Bias-Variance Trade-Off

Higher k (e.g., LOOCV): Lower bias, higher variance, more
computational cost.
Lower k (e.g., 5-fold): Higher bias, lower variance, faster
computation.

Data-Aware Considerations:
Stratified Sampling:

Maintain class proportions in each fold.
Especially important in imbalanced classification problems.

Time Series Data:
Use time-aware cross-validation (e.g., rolling windows, forward
chaining).
Avoid random shuffling to prevent look-ahead bias.
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Model Selection: Fundamentals
Goal:

Choose the model that best balances prediction accuracy,
generalization to new data, and interpretability.

Bias-Variance Trade-Off:

Simple models: High bias (may miss important patterns), low
variance (stable estimates).

Complex models: Low bias (fit training data well), high variance
(may overfit).

Parsimony Principle:

Prefer simpler models if their performance is similar.

Example: Linear model may be preferred over a neural network if
both have similar prediction error.

Overfitting vs. Underfitting:

Overfitting: Model too complex — fits noise in training data, poor
generalization.

Underfitting: Model too simple — misses patterns in data, poor fit.
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Information Criteria for Model Selection
Goal: Balance model fit and complexity using penalized criteria.
Akaike Information Criterion (AIC):AIC = −2 log(L) + 2p

L: Maximum likelihood of the model
p: Number of estimated parameters
Prioritizes predictive accuracy; less strict penalty

Bayesian Information Criterion (BIC): BIC = −2 log(L) + p log(n)

n: Number of observations
Favors simpler models; stronger penalty on complexity
Often preferred for model identification

Adjusted R2: R2
adj = 1− (1−R2)(n−1)

n−p−1

Penalizes R2 for model complexity
Useful for comparing nested linear models

Interpretation:

Lower AIC or BIC indicates a preferred model (relative comparison
only).
Higher adjusted R2 suggests better balance of fit and complexity.
BIC penalizes complexity more than AIC.
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Validation-Based Methods for Model Selection

Cross-Validation Error: CV(k) =
1
k

∑k
i=1 Errori

Average validation error over k folds.

Lower CV error indicates better expected generalization performance.

Prediction Error Metrics:

Regression (continuous targets): MSE = 1
n

∑n
i=1(yi − ŷi )

2

Classification (categorical targets):
Misclassification rate = 1

n

∑n
i=1 I (yi ̸= ŷi ) where I (·) is the indicator

function.

One-Standard-Error Rule:

Among all candidate models, identify the model with the lowest CV
error.

Choose the simplest model whose CV error is within one standard
error of the minimum.

Helps prevent overfitting while preserving near-optimal performance.
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Variable Selection Methods

Goal: Identify a subset of predictors that improves model interpretability
without sacrificing predictive performance.
Subset Selection Methods:

Best Subset Selection:
Try all 2p possible combinations of predictors.
Computationally intensive; feasible only for small p.

Forward Selection:
Start with no variables.
Add variables one at a time based on performance improvement.

Backward Elimination:
Start with all variables.
Remove least useful variable at each step.

Stepwise Selection:
Combines forward and backward steps to refine selection.
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Regularization
Ridge Regression (ℓ2 penalty):

min
β

n∑
i=1

(yi − xTi β)2 + λ

p∑
j=1

β2
j

Shrinks coefficients toward zero; helps with multicollinearity, but does
not perform variable selection.

Lasso (ℓ1 penalty):

min
β

n∑
i=1

(yi − xTi β)2 + λ

p∑
j=1

|βj |

Encourages sparsity; some coefficients exactly zero.

Elastic Net (Combined ℓ1 + ℓ2):

min
β

n∑
i=1

(yi − xTi β)2 + λ1

∑
|βj |+ λ2

∑
β2
j

Useful when predictors are highly correlated or p > n.
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Regularization and Modern Approaches
Regularization Path:

Sequence of models obtained by varying the regularization parameter
λ.
Shows how coefficients evolve from full model to sparse model as λ
increases.

Tuning Regularization via Cross-Validation:

Select optimal λ by minimizing validation error.
Grid search: Evaluate model on a fixed grid of λ values.
Random search: Sample λ values randomly; more efficient in high
dimensions.

Ensemble Methods: Combine multiple models to improve
performance

Bagging (Bootstrap Aggregating):
Reduces variance by averaging models trained on bootstrap samples.
Example: Random Forests.

Boosting:
Sequentially corrects errors of previous models to reduce bias.
Example: Gradient Boosting Machines (GBM), XGBoost.

Stacking:
Combines predictions from multiple models using a meta-learner.
Learns how to weight and combine base models optimally.
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Linearity Assumption: Detailed View

Mathematical expression: E (Y |X ) = Xβ

Detection methods:
Residual vs. fitted plots
Residual vs. individual predictor plots

Remedies for nonlinearity:
Transform variables (log, square, square root)
Add polynomial terms
Use splines or local regression
Consider generalized additive models (GAMs)
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Independence and Constant Variance: Detailed View

Independence:
Mathematical expression: Cov(εi , εj) = 0 for i ̸= j
Detection: Durbin-Watson test, ACF/PACF plots
Remedies: Time series models, mixed-effects models

Homoscedasticity:
Mathematical expression: Var(εi ) = σ2 for all i
Detection: Breusch-Pagan test, residual plots, scale-location plots
Remedies: Transformation, weighted least squares, robust standard
errors
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Coefficient Estimation and Properties

OLS estimator: β̂ = (XTX )−1XT y

Properties:
Unbiased: E (β̂) = β
Variance: Var(β̂) = σ2(XTX )−1

BLUE (Best Linear Unbiased Estimator)
Normally distributed if errors are normal

Covariance matrix: σ̂2(XTX )−1 where σ̂2 = RSS
n−p−1
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Model Evaluation in Multiple Regression

R2 and adjusted R2:

R2 = 1− RSS

TSS
=

ESS

TSS
(1)

R2
adj = 1− RSS/(n − p − 1)

TSS/(n − 1)
(2)

F -statistic:

F =
ESS/p

RSS/(n − p − 1)
(3)

=
R2/p

(1− R2)/(n − p − 1)
(4)
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Multicollinearity

Perfect multicollinearity: Linear dependence among predictors

Near multicollinearity: High correlation among predictors

Consequences:
Inflated coefficient variances
Unstable coefficient estimates
Reduced power of tests

Detection:
Correlation matrix
Variance Inflation Factor (VIF): VIFj =

1
1−R2

j

Condition number of XTX

Remedies:
Remove redundant predictors
Use principal components
Ridge regression
Centered variables for interactions
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Sampling Distribution of Regression Coefficients

Under classical assumptions:

β̂ ∼ N(β, σ2(XTX )−1) (5)

β̂j − βj

SE (β̂j)
∼ tn−p−1 (6)

For nonlinear functions of parameters:
Delta method: Uses first-order Taylor expansion
Bootstrap: Empirical sampling distribution
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Weighted Least Squares: Theory

Model: y = Xβ + ε, where Var(ε) = σ2Ω

WLS estimator:

β̂WLS = (XTΩ−1X )−1XTΩ−1y (7)

Properties:
Unbiased: E (β̂WLS) = β
Variance: Var(β̂WLS) = σ2(XTΩ−1X )−1

BLUE among all linear unbiased estimators

Challenge: Estimating Ω in practice
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Heteroskedasticity-Consistent Standard Errors

White’s estimator (HC0):

V̂ar(β̂) = (XTX )−1XTdiag(e2i )X (XTX )−1 (8)

Improved estimators:
HC1: Correction for degrees of freedom
HC2: Leverage adjustment
HC3: Further leverage adjustment
HC4, HC5: For high leverage points

HAC (Heteroskedasticity and Autocorrelation Consistent):
Newey-West estimator
Accounts for both heteroskedasticity and autocorrelation
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Final Review: Connecting Theory to Practice

Statistical inference is built on a foundation of assumptions

Model diagnosis is as important as model building

When assumptions are violated, alternatives exist:

Robust methods
Resampling approaches
Transformation techniques

Model selection should consider:

Statistical criteria (AIC, BIC, CV error)
Domain knowledge
Interpretability
Practical constraints

Remember that statistical models serve to approximate reality
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Exam Preparation Tips

Focus on understanding concepts, not just formulas

Practice applying methods to real data

Be able to interpret output from statistical software

Understand when each method is appropriate

Be prepared to diagnose problems and recommend solutions

Connect topics across the course:

How do regression assumptions affect inference?
How does cross-validation improve model selection?
How do bootstrap methods complement classical inference?
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