
Lecture 4: Simple Linear Regression Assumptions

Module 1: part 3

Spring 2024

Module 1: part 3 BTRY 6020 Spring 2024 1 / 28



Logistics

• Wrap up Module 1 today

• Module assessment due on Feb 11 11:59pm

• Module 2 will consider regression with multiple covariates

• Office hour locations: Daniel and Tathagata (Comstock 1187); Nayel in
Surge B 159.
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Recap

The equation for a line can be put into the following form

Y = b0 + b1X (1)

• X and Y are variables

• b0 is the Y-intercept. It is the value of the Y coordinate when X = 0

• b1 is the slope. It describes how Y changes as X changes.
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Recap

Suppose we observe (x1, y1), (x2, y2), . . . , (xn, yn).

To select a “best line” we consider the difference between the predicted point and
observed value of yi and choose b̂0 and b̂1 to minimize the RSS:

RSS(b̂0, b̂1) =
∑
i

(yi − ŷi )
2 =

∑
i

(yi − (b̂0 + b̂1xi ))
2 (2)
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Recap

Outliers:

• Points which have x values far from x̄ have high leverage

• Points which have high leverage may also have high influence; i.e., change
the estimate when included/excluded

• When to include or exclude points with high influence?
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Linear Model
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Interpretation

Let’s take a step back and consider what we have calculated

• Still have “hat’s” on b̂0 and b̂1 because they are calculated from the sample
data

• We want to use the sampled data to infer something about the population
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Sample data vs population distribution
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Linear Models

Much of what we’ve talked about so far involves calculating coefficients which
describe a specific set of data

• Given a sample of data (x1, y1), (x2, y2) . . . , (xn, yn), calculate line which
minimizes RSS

• Sample is all we have, but most often we are interested in quantities which
describe a population

• Given a new sample (potentially repeating the experiment) will give different
estimates of b̂0 and b̂1

• What can we say about b̂0, b̂1 and the “true” population process?

Module 1: part 3 BTRY 6020 Spring 2024 9 / 28



Linear Model Assumptions

Commonly used linear model where εi is an error term:

Yi = b0 + b1Xi + εi

Assumptions of the model:

• Linear function: E (Yi | Xi = x) = b0 + b1x

• Independence across observations: εi is independent of εk where i and k
denote different observations

• Independence of errors: εi is independent of Xi with mean 0 and variance σ2

Less important assumption:

• Normality: sometimes, we assume that εi ∼ N(0, σ2)
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Model Implications

Conditional expectation: E (Yi | Xi = x) = b0 + b1x

Interpretation

• b0 is the expected value of Yi when conditioning on Xi = 0

• b1 is the difference of the expected value of Yi when conditioning on values
of Xi which differ by 1 unit.

b1 = E (Yi | Xi = x + 1)− E (Yi | Xi = x)
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Conditional Expectation

In general, the conditional expectation is not the same as “intervening” on X

Figure: Messerli 2012, NEJM
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Interpretation

Correct Interpretations

• Given two observations whose X values differ by 1 unit, we would expect the
observation with the larger X value to have a Y value b1 units larger than
the observation with the smaller X value

• Given two observations whose X values differ by 1 unit, on average the
observation with the larger X value will have a Y value b1 units larger than
the observation with the smaller X value

• A 1 unit difference in X is associated with a b1 unit difference in Y

Incorrect Interpretations

• Increasing X by 1 unit increases Y by b1 units

• A 1 unit increase in X causes Y to increase by b1 units
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Statistic is unbiased

Under the assumptions that εi is independent of Xi , we have:

E (b̂1) = b1

E (b̂0) = b0

so that the estimated values are “unbiased” estimators of the true values

• If you replicate the experiment many different times, you will get a different
estimate, each time, but the average will be the “truth”
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Potentially helpful (but not necessary) math

Under the assumptions, we have:

ȳ =
1

n

∑
i

(b0 + b1xi + εi ) = b0 +
1

n

∑
i

b1xi +
1

n

∑
i

εi = b0 + b1x̄ + ε̄

E (b̂1 | X ) = E

(∑
i (yi − ȳ)(xi − x̄)∑

i (xi − x̄)2
| X

)
= E

(∑
i (b0 + b1xi + εi − b0 − b1x̄ − ε̄)(xi − x̄)∑

i (xi − x̄)2
| X

)
= E

(
b1

∑
i (xi − x̄)(xi − x̄)∑

i (xi − x̄)2
| X

)
+ E

(∑
i (εi − ε̄)(xi − x̄)∑

i (xi − x̄)2
| X

)
︸ ︷︷ ︸

cov(εi ,Xi )=0

= b1 + 0
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Model Assumptions: Linearity

Look for patterns in residuals if the linearity assumption is violated
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Model Assumptions: Linearity

What happens if the linearity assumption is violated?

• Consider transforming your data with a non-linear transformation

• Adding other covariates can be “helpful”

• b1 no longer corresponds to change in conditional expectation, but the sign
of coefficient can still be useful for interpretability

• Parameters are the best “linear approximation”

• Best linear approximation depends on the range of the X values
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Model Assumptions: independence across observations

• Observations are independent if the value of one observation does not
influence or provide information about the value of another observation.

• Ensures that the estimated coefficients and their associated statistical
inferences (e.g., confidence intervals, hypothesis tests) are valid and reliable.

• Observations collected over time (e.g., stock prices, temperature readings)
are often correlated with past values (autocorrelation).
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Model Assumptions: independence of error and covariate

We made a strong assumption that εi is mean 0 and independent of Xi

• What if the variance of εi depends on Xi? i.e., model is heteroscedastic
• As long as E (εi | Xi ) = 0, estimates are still unbiased E (b̂1) = b1
• Will effect testing procedures!
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Discussion

• What is a scientific question that you are interested in?

• Are you trying to do prediction or modeling?

• Are the assumptions we discussed today reasonable for your setting?
• Linearity
• Independence across observations
• Independence of errors and covariates
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Assessing explanatory power

Module 1: part 3 BTRY 6020 Spring 2024 24 / 28



Components of the squared error

How can we assess how useful the explanatory variable is for predicting the
response variable?

(yi − ȳ) = (yi − ŷi + ŷi − ȳ)

= (yi − ŷi ) + (ŷi − ȳ)

= residual + predicted deviation from mean

(3)

Using a bit of algebra, we can decompose the total sum of squares for Y into

SStotal =
∑
i

(yi − ȳ)2 =
∑
i

(ŷi − ȳ)2︸ ︷︷ ︸
SSregression

+
∑
i

(yi − ŷi )
2

︸ ︷︷ ︸
SSerror

(4)
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2

︸ ︷︷ ︸
SSerror

(4)

Module 1: part 3 BTRY 6020 Spring 2024 25 / 28



Components of the squared error

If SSregression is large compared to SSerror , then the explanatory variable is a good
predictor of the response variable

1− SSerror
SStotal

=
SSregression
SStotal

=

∑
i (ŷi − ȳ)∑
i (yi − ȳ)

= r2XY︸ ︷︷ ︸
Referred to as R2

(5)
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Example: Components of the squared error

The R2 for height and weight is .59 while the R2 for height and experience is .01.
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Wrap-up

• If we assume the true population process is a linear model, we can describe
properties of the estimated regression coefficients

• Estimated slope is estimated difference in conditional expectation associated
with difference in X

• If assumptions are violated, interpretation is not as straightforward

• Explanatory power of regression can be summarized by R2 value

• Next module will consider setting with more than 1 covariate
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