Lecture 4: Simple Linear Regression Assumptions
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Logistics

® Wrap up Module 1 today
® Module assessment due on Feb 11 11:59pm
® Module 2 will consider regression with multiple covariates

® Office hour locations: Daniel and Tathagata (Comstock 1187); Nayel in
Surge B 159.
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Recap
The equation for a line can be put into the following form

Y = by + b1 X (1)
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Recap
The equation for a line can be put into the following form

Y =by+ b1 X (1)

® X and Y are variables
® py is the Y-intercept. It is the value of the Y coordinate when X =0
® p; is the slope. It describes how Y changes as X changes.
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Recap

Suppose we observe (xi,y1), (%2, ¥2), - -+, (Xa, ¥n)-

To select a “best line” we consider the difference between the predicted point and
observed value of y; and choose by and b; to minimize the RSS:

RSS(BO, 131) = Z(yi - )7,')2 = Z(yi - (BO + BlXi))2 (2)

i

Difference between observed Y and predicted Y

X
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Recap

Outliers:
® Points which have x values far from X have high leverage

® Points which have high leverage may also have high influence; i.e., change
the estimate when included/excluded

® When to include or exclude points with high influence?
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Linear Model
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Interpretation

Let's take a step back and consider what we have calculated

* Still have “hat's” on by and by because they are calculated from the sample
data

® We want to use the sampled data to infer something about the population
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Sample data vs population distribution

Statistic

Population

Data Generating
Process

Module 1: part 3

Spring 2024 8/28



Linear Models

Much of what we've talked about so far involves calculating coefficients which
describe a specific set of data

® Given a sample of data (x1, y1), (x2,¥2) .- -, (Xn, ¥n), calculate line which
minimizes RSS

® Sample is all we have, but most often we are interested in quantities which
describe a population

® Given a new sample (potentially repeating the experiment) will give different
estimates of by and b;

® What can we say about 507 by and the “true” population process?
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Linear Model Assumptions
Commonly used linear model where ¢; is an error term:

Yi=bo + b1 Xi +¢;
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Linear Model Assumptions
Commonly used linear model where ¢; is an error term:

Yi = by + b1 Xi +¢;

Assumptions of the model:
® Linear function: E(Y; | X; = x) = by + b1 x
® |ndependence across observations: ¢; is independent of £, where i and k

denote different observations

® Independence of errors: ¢; is independent of X; with mean 0 and variance ¢
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Linear Model Assumptions
Commonly used linear model where ¢; is an error term:

Yi = by + b1 Xi +¢;

Assumptions of the model:
® Linear function: E(Y; | X; = x) = by + b1 x

® |ndependence across observations: ¢; is independent of £, where i and k
denote different observations

® Independence of errors: ¢; is independent of X; with mean 0 and variance ¢

Less important assumption:

® Normality: sometimes, we assume that &; ~ N(0, 0?)

R — e



Model Implications

Conditional expectation: E(Y; | Xi = x) = by + b1 x
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Model Implications
Conditional expectation: E(Y; | Xi = x) = by + b1 x

Interpretation
® by is the expected value of Y; when conditioning on X; =0

® b is the difference of the expected value of Y; when conditioning on values
of X; which differ by 1 unit.

by = E(Y; | Xj = x+1) — E(Y; | Xi = x)
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Conditional Expectation

In general, the conditional expectation is not the same as “intervening” on X
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Conditional Expectation

In general, the conditional expectation is not the same as “intervening” on X
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Interpretation

Correct Interpretations

® Given two observations whose X values differ by 1 unit, we would expect the
observation with the larger X value to have a Y value b; units larger than
the observation with the smaller X value

® Given two observations whose X values differ by 1 unit, on average the
observation with the larger X value will have a Y value b; units larger than
the observation with the smaller X value
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Interpretation

Correct Interpretations

® Given two observations whose X values differ by 1 unit, we would expect the
observation with the larger X value to have a Y value b; units larger than
the observation with the smaller X value

® Given two observations whose X values differ by 1 unit, on average the
observation with the larger X value will have a Y value b; units larger than
the observation with the smaller X value

® A 1 unit difference in X is associated with a b; unit difference in Y
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Interpretation

Correct Interpretations

® Given two observations whose X values differ by 1 unit, we would expect the
observation with the larger X value to have a Y value b; units larger than
the observation with the smaller X value

® Given two observations whose X values differ by 1 unit, on average the
observation with the larger X value will have a Y value b; units larger than
the observation with the smaller X value

® A 1 unit difference in X is associated with a b; unit difference in Y

Incorrect Interpretations
® |ncreasing X by 1 unit increases Y by b; units
® A 1 unit increase in X causes Y to increase by by units
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Statistic is unbiased
Under the assumptions that ¢; is independent of X;, we have:

E(b) = by
E(by) = by

so that the estimated values are “unbiased” estimators of the true values

® |f you replicate the experiment many different times, you will get a different
estimate, each time, but the average will be the “truth”
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Potentially helpful (but not necessary) math

Under the assumptions, we have:

1 1 1
)7:;Z(bo—Fle,'—Fe;):b0+;Zb1X,'—|—;Z€;:bo+b1>_<—|-§

i

e(b 10 = £ (=5 )
_ (Z,( o + bixi +Ze,- (—Xibi)_()in)?é)(x; ~ %) | X)
("R 1) (e
cov(e;, X;)=0
= b +0
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Model Assumptions: Linearity

Look for patterns in residuals if the linearity assumption is violated
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Model Assumptions: Linearity

Look for patterns in residuals if the linearity assumption is violated
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Model Assumptions: Linearity

What happens if the linearity assumption is violated?

® Consider transforming your data with a non-linear transformation
® Adding other covariates can be “helpful”

® b; no longer corresponds to change in conditional expectation, but the sign
of coefficient can still be useful for interpretability

® Parameters are the best “linear approximation”

® Best linear approximation depends on the range of the X values
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Model Assumptions: Linearity

Best linear approximation depends on the range of the X values
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Model Assumptions: Linearity

Best linear approximation depends on the range of the X values
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Model Assumptions: independence across observations

® QObservations are independent if the value of one observation does not
influence or provide information about the value of another observation.

® Ensures that the estimated coefficients and their associated statistical
inferences (e.g., confidence intervals, hypothesis tests) are valid and reliable.

® Observations collected over time (e.g., stock prices, temperature readings)
are often correlated with past values (autocorrelation).
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Model Assumptions: independence of error and covariate

We made a strong assumption that €; is mean 0 and independent of X;

Module 1: part 3

What if the variance of ¢; depends on X;? i.e., model is heteroscedastic
As long as E(g; | X;) = 0, estimates are still unbiased E(by) = by
Will effect testing procedures!
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Discussion

® What is a scientific question that you are interested in?

® Are you trying to do prediction or modeling?

® Are the assumptions we discussed today reasonable for your setting?
® Linearity
® Independence across observations
® |ndependence of errors and covariates
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Assessing explanatory power
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Components of the squared error

How can we assess how useful the explanatory variable is for predicting the
response variable?

Yi-y9)=Vi—yi+3i—7y)
=i—9)+i—-y) 3)
= residual 4 predicted deviation from mean

Module 1: part 3 Spring 2024 25/28



Components of the squared error

How can we assess how useful the explanatory variable is for predicting the
response variable?
Yi-y9)=Vi—yi+3i—7y)
=i—9)+i—-y) 3)
= residual 4 predicted deviation from mean

Using a bit of algebra, we can decompose the total sum of squares for Y into

SStotal = Z(y,- —y)? = Z(y; -y’ + Z(y; - 9i)? (4)

ssregression Sserror
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Components of the squared error

If SSyegression is large compared to SSeror, then the explanatory variable is a good
predictor of the response variable

SSerror . SSregression _ Z,’()’}i - }_/) _ 2 (5)
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Example: Components of the squared error

The R? for height and weight is .59 while the R? for height and experience is .01.
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Wrap-up

® |f we assume the true population process is a linear model, we can describe
properties of the estimated regression coefficients

® Estimated slope is estimated difference in conditional expectation associated
with difference in X

® |f assumptions are violated, interpretation is not as straightforward
® Explanatory power of regression can be summarized by R? value
® Next module will consider setting with more than 1 covariate
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