Lecture 5: Multiple Linear Regression

Module 2: part 1
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Logistics

e Start of Module 2 (3 lectures total)
® Assessment for Module 1 is due 11:59pm on Feb 11 (Wed)
® See Canvas Announcement (ask TAs if any question)
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Linear Regression

In Module 1, we discussed simple linear regression, the setting where we observe
two variables:

® One dependant variable (predicted variable): Y;

® One independent variable (predictor variable, covariate, regressor): X;
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Linear Regression

In Module 1, we discussed simple linear regression, the setting where we observe
two variables:

® One dependant variable (predicted variable): Y;
® One independent variable (predictor variable, covariate, regressor): X;

In Module 2, we will consider Multiple Linear Regression, the setting where we
have:

® Multiple independent variables (predictor variable, covariate, regressor): X;

Allows for better predictive power

Allows for more flexible, richer models

Allows to “adjust” for other variables
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Example: Housing prices

Data contains the sale price of 522 houses in a Midwestern city in 20021.

® Y is sale price of home

® What covariates would you use to predict or model the price of a home?

IDataset from 'Applied Linear Statistical Models’ by Kutner, Nachtsheim, Neter, and Li
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Example: Housing prices

In this data set we have recorded: Square footage, bedrooms, bathrooms, AC,
garage, pool, Age of home, quality, lot size, home style

Hom/e?rice; = b + Blsq Ft;
R? = .67
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Example: Housing prices

In this data set we have recorded: Square footage, bedrooms, bathrooms, AC,
garage, pool, Age of home, quality, lot size, home style

Hom/e?rice; = 130 + Bl Beds;

R? = 17
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Example: Housing prices

In this data set we have recorded: Square footage, bedrooms, bathrooms, AC,
garage, pool, Age of home, quality, lot size, home style

Homice; = Bo + BlBaths;

R? = A7
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Example: Housing prices

In this data set we have recorded: Square footage, bedrooms, bathrooms, AC,
garage, pool, Age of home, quality, lot size, home style

Ho@ice; = b + Blsq Ft; + b,Beds; + bsBaths;
R? = .69
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Multiple Linear Regression

We will predict y; using p different covariates

P
Vi = bg + b1X,',1 + b2X,'72 - pr,'7p = by + Z ij,'J

j=1
Notation:
® We will typically use bold face to denote vectors
® QObservations will typically be i =1,..., n and covariates will be j =1,....p

® x;; denotes the value of the jth covariate for the ith observation
® The covariates for the jth observation: X; = {Xi1,Xi2,...,Xip}

® X table (or matrix) where each row is one observation and each column is a
covariate

L4 Y:{Y17Y2,...7Yn}

® Vector of linear coefficients : b = {by, b1, b2, ..., by}
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Multiple Linear Regression

We will predict y; using p different covariates

P
}7,' = by + b1X,'71 + b2X,‘72 - pr,'7p = by + Z ij,"j
=1
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Multiple Linear Regression
We will predict y; using p different covariates

P
}7,' = by + b1X,'71 + bQX,‘,2 - pr,'7p = by + Z ij,'J
=1

Select b by minimizing the residual sum of squares:

n

RSS(B) = > (vi — 91)* = Z[y (bo+_ by

i=1
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Potentially helpful but not necessary math

In matrix vector notation,
RSS(b) = (Y — Xb)T (Y — Xb)

so to minimize this quantity, we take the derivative and solve for 0.

Taking the derivative with respect to vectors is a bit more complex, but intuitively

similar R
ORSS(b "
# = —2X'(Y — Xb)

0= —2X/(Y — Xb)

0=X'Y - X'Xb
cov(X,Y)
)

Cvar(X)

~

b= (X'X)"X'Y ~
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Multiple Linear Regression
The population model we are trying to recover is

E(Yi | Xi=x) = by + bixa + boxo + ... + bpxp
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Multiple Linear Regression
The population model we are trying to recover is

E(Y: | Xi =x) = by + bix1 + boxo + ... + bpx,

Interpretation:
® by is the expected value of Y; when all observed covariates are 0
® For k # 0, by is the difference in the expected value of Y; and Y} when x; «
and x; x differ by 1 unit (i.e., X; x — xj,x = 1), but the value of all other
observed covariates are the same (holding all the other x;; constant).
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Example

In the housing example:
® In simple linear regression, the coefficient of Beds captures association of an
additional bedroom (which may also be associated with additional square
footage)
® In multiple linear regression, the coefficient of Beds captures association of
an additional bedroom (when Sq footage stays the same)
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Example
Simple Linear Regression: E(Home Price; | Sq Ft, Beds, Baths) = by + b;Beds;,
by = 56,200

If House 1 has two bedroom and House 2 has three bedrooms, we would expect
House 2 to be 56,200 more expensive than House 1.
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Example
Simple Linear Regression: E(Home Price; | Sq Ft, Beds, Baths) = by + b;Beds;,
by = 56,200

If House 1 has two bedroom and House 2 has three bedrooms, we would expect
House 2 to be 56,200 more expensive than House 1.

Multiple Linear Regression:
E(Home Price; | Sq Ft, Beds, Baths) = by + b1Sq Ft; + byBeds; + bsBaths;,

by = 143: b, = —14,786

If House 1 has two bedroom and House 2 has three bedrooms but the two houses
have the same Sq Footage and the same number of bathrooms, we would expect
House 2 to be 14,786 less expensive than House 1.
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Example: Productivity, Coffee, and Caffeine
In the example:

E(Productivity; | Coffee) = by + by Coffee;

E(Productivity; | Caffeine) = by 4 by Caffeine;
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Example: Productivity, Coffee, and Caffeine
In the example:

E(Productivity; | Coffee) = by + by Coffee;
E(Productivity; | Caffeine) = by 4 by Caffeine;

E(Productivity; | Coffee, Caffeine) = by + by Coffee; + b,Caffeine;
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Interpreting Coefficients

® Each coefficient captures the association of a single covariate when all other
covariates are fixed

® The coefficient (in the population model and the estimated coefficients) will
change depending on what other covariates are included

® The size of coefficients can only be compared with respect to the units of the
covariates
e.g., coefficient of Sq Ft has a much smaller magnitude than the coefficient
of Beds because 1 additional sq ft is very different than 1 additional bedroom
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Interpreting Coefficients

® Each coefficient captures the association of a single covariate when all other
covariates are fixed

® The coefficient (in the population model and the estimated coefficients) will
change depending on what other covariates are included

® The size of coefficients can only be compared with respect to the units of the
covariates
e.g., coefficient of Sq Ft has a much smaller magnitude than the coefficient
of Beds because 1 additional sq ft is very different than 1 additional bedroom

® Discuss a problem in your field where you are interested in measuring
association between a covariate and an outcome when holding other
covariates fixed
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Specific types of covariates
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Polynomial regression

The big assumption in linear regression is the conditional expectation of Y is
linear in the covariates

E(Y|X:X)=b0+b1X

But what if the conditional expectation is not linear in x?

E(Y | X = x) = by + byix + byx?
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Polynomial regression

The big assumption in linear regression is the conditional expectation of Y is
linear in the covariates

E(Y|X:X):b0+b1X

But what if the conditional expectation is not linear in x?
E(Y | X = x) = by + byix + byx?

We can always include additional terms and estimate:
91 = by + byx; + byx?

® Covariate 1 is x;; Covariate 2 is just the square of the first covariate
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Polynomial regression

® The “degree” is the largest exponent in a polynomial

® You can fit a higher degree polynomial if your data is large enough (bias
variance trade-off)

® The model is still linear in the covariates (the covariates just happen to be
non-linear terms of x;)

® In practice, because x; and x?, x?, ... can be very correlated and the higher
order terms can be large, rescaling the higher order terms is very helpful
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Polynomial regression

Example: Suppose I'm interested in predicting the number of calories in a pizza
based on the radius of the pizza

Cms,- = 130 + BlRadius of Pizza
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Polynomial regression

Example: Suppose I'm interested in predicting the number of calories in a pizza
based on the radius of the pizza
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Polynomial regression

Example: Suppose I'm interested in predicting the number of calories in a pizza
based on the radius of the pizza

Calories; = —1.6 + 344.2 x Radius of Pizza
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Polynomial regression

Example: Suppose I'm interested in predicting the number of calories in a pizza
based on the radius of the pizza

Calories; = —2.5 + 5.0 x Area of Pizza
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Polynomial regression

Example: Suppose I'm interested in predicting the number of calories in a pizza
based on the radius of the pizza

Calories; = —2.5 + 5.0 x Area of Pizza
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Polynomial regression

Example: Suppose I'm interested in predicting the number of calories in a pizza
based on the radius of the pizza

Ca/loﬁes,- = —2.5+5.0 x Area of Pizza = —2.5 + 0 x Radius + 5.0 x wRadius?
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Polynomial regression
Interpretation of coefficients in polynomial regression is more complicated

E(Y; | X; = x) = bg + byx + box® + b3x®

® |ncorrect: A 1 unit increase in x is associated with a b; increase in Y when
holding x2, x3, ... constant

® Correct: A change of x from 4 to 5 is associated with a
[b1(5) + b2(5)* + b3(5)°] — [b1(4) + b2(4)°2 + b3(4)’]

increase in Y

® We must account for the fact that changing x also changes x? and x3 (you
CANNOT change x while keeping x? constant).

® Association of Y and X not constant everywhere, but depends on specific
value of X = x
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Wrap up

® We can model the conditional expectation of Y with multiple covariates

Fit coefficients by minimizing the residual sum of squares

Each coefficient describes the association between covariate and Y when
holding all other covariates fixed

Can include covariates which are polynomials of other covariates

Lab will consider modeling home prices and predicting Brexit votes
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	Specific types of covariates

