
Lecture 5: Multiple Linear Regression

Module 2: part 1

Spring 2024

Module 2: part 1 BTRY 6020 Spring 2024 1 / 22



Logistics

• Start of Module 2 (3 lectures total)

• Assessment for Module 1 is due 11:59pm on Feb 11 (Wed)

• See Canvas Announcement (ask TAs if any question)
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Linear Regression

In Module 1, we discussed simple linear regression, the setting where we observe
two variables:

• One dependant variable (predicted variable): Yi

• One independent variable (predictor variable, covariate, regressor): Xi

In Module 2, we will consider Multiple Linear Regression, the setting where we
have:

• Multiple independent variables (predictor variable, covariate, regressor): Xi

• Allows for better predictive power

• Allows for more flexible, richer models

• Allows to “adjust” for other variables
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Example: Housing prices

Data contains the sale price of 522 houses in a Midwestern city in 20021.

• Yi is sale price of home

• What covariates would you use to predict or model the price of a home?

1Dataset from ’Applied Linear Statistical Models’ by Kutner, Nachtsheim, Neter, and Li
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Example: Housing prices

In this data set we have recorded: Square footage, bedrooms, bathrooms, AC,
garage, pool, Age of home, quality, lot size, home style

̂Home Pricei = b̂0 + b̂1Sq Fti

R2 = .67
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Example: Housing prices

In this data set we have recorded: Square footage, bedrooms, bathrooms, AC,
garage, pool, Age of home, quality, lot size, home style

̂Home Pricei = b̂0 + b̂1Bedsi

R2 = .17
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Example: Housing prices

In this data set we have recorded: Square footage, bedrooms, bathrooms, AC,
garage, pool, Age of home, quality, lot size, home style

̂Home Pricei = b̂0 + b̂1Bathsi

R2 = .47
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Example: Housing prices

In this data set we have recorded: Square footage, bedrooms, bathrooms, AC,
garage, pool, Age of home, quality, lot size, home style

̂Home Pricei = b̂0 + b̂1Sq Fti + b̂2Bedsi + b̂3Bathsi

R2 = .69
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Multiple Linear Regression

We will predict ŷi using p different covariates

ŷi = b̂0 + b̂1xi,1 + b̂2xi,2 . . . b̂pxi,p = b̂0 +

p∑
j=1

b̂jxi,j

Notation:

• We will typically use bold face to denote vectors

• Observations will typically be i = 1, . . . , n and covariates will be j = 1, . . . , p

• xi,j denotes the value of the jth covariate for the ith observation

• The covariates for the ith observation: Xi = {Xi,1,Xi,2, . . . ,Xi,p}
• X table (or matrix) where each row is one observation and each column is a

covariate

• Y = {Y1,Y2, . . . ,Yn}
• Vector of linear coefficients : b̂ = {b̂0, b̂1, b̂2, . . . , b̂p}
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Multiple Linear Regression

We will predict ŷi using p different covariates

ŷi = b̂0 + b̂1xi,1 + b̂2xi,2 . . . b̂pxi,p = b̂0 +

p∑
j=1

b̂jxi,j

Select b̂ by minimizing the residual sum of squares:

RSS(b̂) =
n∑

i=1

(yi − ŷi )
2 =

n∑
i=1

[yi − (b̂0 +

p∑
j=1

b̂jxi,j)]
2
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Potentially helpful but not necessary math

In matrix vector notation,

RSS(b̂) = (Y − Xb̂)T (Y − Xb̂)

so to minimize this quantity, we take the derivative and solve for 0.
Taking the derivative with respect to vectors is a bit more complex, but intuitively
similar

∂RSS(b̂)

∂b̂
= −2X′(Y − Xb̂)

0 = −2X′(Y − Xb̂)

0 = X′Y − X′Xb̂

b̂ = (X′X)−1X′Y ≈ cov(X ,Y )

var(X )
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Multiple Linear Regression

The population model we are trying to recover is

E (Yi | Xi = x) = b0 + b1x1 + b2x2 + . . .+ bpxp

Interpretation:

• b0 is the expected value of Yi when all observed covariates are 0

• For k ̸= 0, bk is the difference in the expected value of Yi and Yj when xi,k
and xj,k differ by 1 unit (i.e., xi,k − xj,k = 1), but the value of all other
observed covariates are the same (holding all the other xi,l constant).
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Example

In the housing example:

• In simple linear regression, the coefficient of Beds captures association of an
additional bedroom (which may also be associated with additional square
footage)

• In multiple linear regression, the coefficient of Beds captures association of
an additional bedroom (when Sq footage stays the same)
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Example

Simple Linear Regression: E (Home Pricei | Sq Ft, Beds, Baths) = b0+b1Bedsi ,

b̂1 = 56, 200

If House 1 has two bedroom and House 2 has three bedrooms, we would expect
House 2 to be 56, 200 more expensive than House 1.

Multiple Linear Regression:
E (Home Pricei | Sq Ft, Beds, Baths) = b0 + b1Sq Fti + b2Bedsi + b3Bathsi ,

b̂1 = 143; b̂2 = −14, 786

If House 1 has two bedroom and House 2 has three bedrooms but the two houses
have the same Sq Footage and the same number of bathrooms, we would expect
House 2 to be 14, 786 less expensive than House 1.
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Example: Productivity, Coffee, and Caffeine

In the example:

E (Productivityi | Coffee) = b0 + b1Coffeei

E (Productivityi | Caffeine) = b0 + b1Caffeinei

E (Productivityi | Coffee, Caffeine) = b0 + b1Coffeei + b2Caffeinei
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Interpreting Coefficients

• Each coefficient captures the association of a single covariate when all other
covariates are fixed

• The coefficient (in the population model and the estimated coefficients) will
change depending on what other covariates are included

• The size of coefficients can only be compared with respect to the units of the
covariates
e.g., coefficient of Sq Ft has a much smaller magnitude than the coefficient
of Beds because 1 additional sq ft is very different than 1 additional bedroom

• Discuss a problem in your field where you are interested in measuring
association between a covariate and an outcome when holding other
covariates fixed

Module 2: part 1 BTRY 6020 Spring 2024 13 / 22



Interpreting Coefficients

• Each coefficient captures the association of a single covariate when all other
covariates are fixed

• The coefficient (in the population model and the estimated coefficients) will
change depending on what other covariates are included

• The size of coefficients can only be compared with respect to the units of the
covariates
e.g., coefficient of Sq Ft has a much smaller magnitude than the coefficient
of Beds because 1 additional sq ft is very different than 1 additional bedroom

• Discuss a problem in your field where you are interested in measuring
association between a covariate and an outcome when holding other
covariates fixed

Module 2: part 1 BTRY 6020 Spring 2024 13 / 22



Specific types of covariates
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Polynomial regression

The big assumption in linear regression is the conditional expectation of Y is
linear in the covariates

E (Y | X = x) = b0 + b1x

But what if the conditional expectation is not linear in x?

E (Y | X = x) = b0 + b1x + b2x
2

We can always include additional terms and estimate:

ŷi = b̂0 + b̂1xi + b̂2x
2
i

• Covariate 1 is xi ; Covariate 2 is just the square of the first covariate
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Polynomial regression

• The “degree” is the largest exponent in a polynomial

• You can fit a higher degree polynomial if your data is large enough (bias
variance trade-off)

• The model is still linear in the covariates (the covariates just happen to be
non-linear terms of xi )

• In practice, because xi and x2i , x
3
i , . . . can be very correlated and the higher

order terms can be large, rescaling the higher order terms is very helpful
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Polynomial regression

Example: Suppose I’m interested in predicting the number of calories in a pizza
based on the radius of the pizza

Ĉaloriesi = b̂0 + b̂1Radius of Pizza
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Polynomial regression

Example: Suppose I’m interested in predicting the number of calories in a pizza
based on the radius of the pizza
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Polynomial regression

Example: Suppose I’m interested in predicting the number of calories in a pizza
based on the radius of the pizza

Ĉaloriesi = −1.6 + 344.2× Radius of Pizza
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Polynomial regression

Example: Suppose I’m interested in predicting the number of calories in a pizza
based on the radius of the pizza

Ĉaloriesi = −2.5 + 5.0× Area of Pizza
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Polynomial regression

Example: Suppose I’m interested in predicting the number of calories in a pizza
based on the radius of the pizza
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Polynomial regression

Example: Suppose I’m interested in predicting the number of calories in a pizza
based on the radius of the pizza

Ĉaloriesi = −2.5 + 5.0× Area of Pizza = −2.5 + 0× Radius + 5.0× πRadius2
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Polynomial regression

Interpretation of coefficients in polynomial regression is more complicated

E (Yi | Xi = x) = b0 + b1x + b2x
2 + b3x

3

• Incorrect: A 1 unit increase in x is associated with a b1 increase in Y when
holding x2, x3, . . . constant

• Correct: A change of x from 4 to 5 is associated with a

[b1(5) + b2(5)
2 + b3(5)

3]− [b1(4) + b2(4)
22 + b3(4)

3]

increase in Y

• We must account for the fact that changing x also changes x2 and x3 (you
CANNOT change x while keeping x2 constant).

• Association of Y and X not constant everywhere, but depends on specific
value of X = x
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Wrap up

• We can model the conditional expectation of Y with multiple covariates

• Fit coefficients by minimizing the residual sum of squares

• Each coefficient describes the association between covariate and Y when
holding all other covariates fixed

• Can include covariates which are polynomials of other covariates

• Lab will consider modeling home prices and predicting Brexit votes
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