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Logistics

• End of Module 2 today

• Module 2 Assessment will be released today, due Feb 21 (Friday)
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Recap

The population model we are trying to recover is

E (Y | X = x) = b0 + b1x1 + b2x2 + . . .+ bpxp

• Can include categorical variables by using dummy variables
• Choose reference category
• Include a binary variable for each other category

• Can include interactions to allow slope of one variable to depend on other
variables

• Covariates are product of other covariates
• Always include main effect when including interactions
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Transformations

Nayel Bettache BTRY 6020 Spring 2025 4 / 18



Transformations

We transformed x by taking a square, but we can use other transformations

• Most common transform is log(y) transform

• Sometimes 1/y or
√
y is also used

• Can transform covariates

E (Y | X = x) = b0 + b1 log(x)
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Transformations

• Fitting a linear model with transformed data is conceptually the same

• Just “plug-in” transformed data

• Careful about interpretation!
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Properties of log

Key Properties of the Natural Logarithm:

1. Definition: loge(x) = a ⇔ ea = x

2. Product Rule: loge(xy) = loge(x) + loge(y)

3. Quotient Rule: loge(x/y) = loge(x)− loge(y)

Figure: Graphical Representation of log(x)
Nayel Bettache BTRY 6020 Spring 2025 7 / 18



Interpretation of Log-Transformed Covariates

Model:
Yi = b0 + b1 log(Xi ) + εi

Expected Value:
E (Yi | Xi = x) = b0 + b1 log(x)

How does a 1% increase in X affect Y ?

• Suppose Xj = 1.01Xi , meaning Xj is 1% larger than Xi .

• Difference in expectations:

E (Yj | Xj = 1.01x)− E (Yi | Xi = x) = b1 log(1.01) ≈ 0.01b1

• Interpretation: For a 1% increase in X , the expected change in Y is
approximately b1 × 0.01.
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Interpreting a Log-Transformed Dependent Variable

Model:
log(Yi ) = b0 + b1Xi + εi

Exponentiating Both Sides:

Yi = eb0 · eb1Xi · eεi

Expected Value:

E (Yi | Xi = x) = eb0 · eb1x · E (eεi )
̸= eb0 · eb1x (since E (eεi ) ̸= 1)

Special Case: If εi ∼ N(0, σ2), then:

E (eεi ) = eσ
2/2 ⇒ E (Yi | Xi = x) = eb0 · eb1x · eσ

2/2
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Interpretation of b1 in Log-Log Models

Model:
log(Yi ) = b0 + b1 log(Xi ) + εi

Elasticity Interpretation:

• If X increases by 1
E (Yj | Xj = 1.01Xi )

E (Yi | Xi )
= 1.01b1

• Percentage change:
100× (1.01b1 − 1)

• Example: If b1 = 0.5, a 1% increase in X leads to a 0.5% increase in Y .
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Comparison to Simple Linear Regression
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Linear Model Assumptions

Linear regression model:

Yi = b0 +

p∑
j=1

bjXi,j + εi

Key Assumptions:
• Linearity: The relationship between Y and X is additive:

E (Yi | Xi = x) = b0 +
∑
j

bjxj

• Independent Errors: Errors across observations are uncorrelated:

εi ⊥ εk for i ̸= k

• Error Independence from Covariates: The error εi has mean zero and is
independent of Xi :

E (εi | Xi ) = 0

Less critical assumption:
• Normality (optional: Sometimes, we assume εi ∼ N(0, σ2) for inference

(e.g., hypothesis testing, confidence intervals).
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Model Assumptions: Linearity

Conditional Expectation:

E (Yi | Xi = x) = b0 + b1x1 + b2x2 + · · ·+ bpxp

Key Points:

• A model may be nonlinear in a single covariate but still linear in multiple
covariates.

• Examples:
• Simple linear regression may not capture all relationships.
• Polynomial regression (e.g., X 2 term) or interaction terms (X1X2) can

improve fit while still being linear in parameters.
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Checking Linearity: Residuals

How to check for violations?
• Plot residuals vs. fitted values.
• Look for patterns (e.g., curves suggest nonlinearity).

Figure: Example of nonlinearity detected via residual patterns

Nayel Bettache BTRY 6020 Spring 2025 14 / 18



Model Assumptions: Independent Errors

Definition: Errors across observations should be uncorrelated:

εi ⊥ εk for i ̸= k

Why is this important?

• Unbiased estimates: Coefficient estimates remain valid.

• Invalid inference: Standard errors and p-values may be incorrect.

Example: Time-Series Data

• If errors are correlated across time (e.g., stock prices), then:

E (εt | εt−1) ̸= 0

• Solutions:
• Include lagged variables (e.g., AR models).
• Use robust inference.
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Model Assumptions: Constant Error Variance
(Homoscedasticity)

Definition: The error variance should be constant across observations:

Var(εi ) = σ2

Violations: Heteroscedasticity
• Occurs when variance changes with X .
• Common in income models: Variability in wages increases with experience.

Detection:
• Residual plot: Plot residuals vs. fitted values.
• Breusch-Pagan test

Figure: Log transformation reducing heteroscedasticity
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Assessing Explanatory Power: R2

Decomposing Variance:

SSTotal = SSRegression + SSError

Definition of R2:

R2 = 1− SSerror
SStotal

=
SSregression
SStotal

Key Interpretations:

• R2 measures goodness-of-fit, not causality.

• A high R2 does not mean a model is correct.

• Adjusted R2 accounts for multiple predictors.
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Wrap-up: Key Takeaways

• Transformations: Log transformations change interpretation.

• Multiple covariates: Improve flexibility and model fit.

• Assumptions: Linearity, independence, and homoscedasticity are critical.
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