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Logistics

® Start Module 3 on inference and hypothesis testing
® Assessment for Module 2 due 2/20
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Sample data vs Population distribution

® In the lab, you fit a model for house prices which included an interaction
between quality and age

® Bage = —0.0045991
® What would happen if we gathered new data?
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Sample data vs Population distribution

Statistic

Population

Data Generating
Process
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Estimator
® Statistic or estimator is a function which takes data as input, and outputs a

number

® Examples: Mean, Median, Regression coefficient
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Estimator

® Statistic or estimator is a function which takes data as input, and outputs a
number

® Examples: Mean, Median, Regression coefficient

® |If we have a model for how the data is generated, then we can also describe
the distribution of the estimator
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Sampling distribution of least squares estimators
Suppose the data is generated from our linear Gaussian model:
Yi=bo+ b1 X+ ¢

where ; ~ N(0,02).
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Sampling distribution of least squares estimators

Suppose the data is generated from our linear Gaussian model:
Yi=bo+ b1 Xi +¢;

where ; ~ N(0,02).

Key idea: Understanding how our estimates would vary if we repeated the
sampling process.

® High level strategy: Condition on observed covariates (X) and analyze model
behavior

® We remain agnostic about covariate generation:

® Could be drawn from a distribution
® Could be fixed by experimenter

e We'll focus on by as our primary coefficient of interest
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Sampling distribution intuition

Goal: Derive the sampling distribution of by step by step.
Starting with our model:

Yi=bo+ b Xi+¢ci, ¢ NN(OaUg)

by = SS% - W (OLS formula)
_ 2oi(x _gi)(()io_"')_(l;’;x" +ei) (Substitute y;)

= by Z ki + by Z kiX; + Z kie; (Rearrange)

where k; = Z?X;i?y are the standardized weights.
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Sampling distribution intuition

Goal: Derive the sampling distribution of by step by step.
Starting with our model:

Yi=bo+ b Xi+¢ci, ¢ NN(OaUg)

by = SS% - W (OLS formula)
_ 2oi(x _gi)(g:o_"';;x’ +ei) (Substitute y;)

= by Z ki + by Z kiX; + Z kie; (Rearrange)
i i i

where k; = ﬁ are the standardized weights.

Key properties: >~ ki =0 and ), kix; = 1, leading to:
[)1 = b; + Z kie;
i
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Expected Value of by

Key Question: |s our estimator centered at the true value?
Using our simplified form: b; = by + Zi kie;

E(by | X) = E(by + Z kici) (Linearity)
= by + Z kiE(g; | X) (Pull out constants)
=b + Z ki -0 (Key assumption)

= b
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Expected Value of by

Key Question: |s our estimator centered at the true value?
Using our simplified form: b; = by + Zi kie;

E(by | X)=E(by+ > _ ki) (Linearity)
=b + Z ;(,'E(E,' | X) (Pull out constants)
=b + zl: ki -0 (Key assumption)
— b ,

e Key Assumption: E(z; | X) =0
e Interpretation: by is an unbiased estimator
® Practical meaning;:

® Each sample gives a different b
® But they cluster around the true b,
® No systematic over/under-estimation
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Variance of by

Key Question: How much does our estimator vary around its mean?

var(by | X) = var(z kiei) (From previous)
i
= Z Kvar(e; | X) (Independence)
i
= o? Z K2 (Homoscedasticity)
i
o? a?
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Variance of by

Key Question: How much does our estimator vary around its mean?

var(by | X) = var(Z kiei) (From previous)
= Z K2var(e; | X) (Independence)
i
=02 Z k? (Homoscedasticity)
o? a?

® Key Assumptions:
® var(e; | X) = o2 (constant variance)
® |ndependence of errors

* Normal Case: If ¢; ~ N(0,02), then: by | X NN(bl, (=5 )

® Practical Insights:
® Precision increases with sample size (n)
® More spread in X (larger sf) improves precision
® Error variance (o2) directly affects uncertainty
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Summary: Sampling Distribution of by

Key Properties Key Assumptions
e Unbiased: E(b; | X) = by ® Zero mean errors
® Variance: val’(Bl | X) = (,,f%g * Constant variance

® Independent errors

Practical Implications:
® | arger samples — Better precision
® More variable X — Better precision
® Noisier data — Less precision

® Normal errors — Normal sampling distribution
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Normal Distribution

Figure: Distribution of 51
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Estimating the Variance: The Challenge

Recall: Variance of our slope estimator is

var(by | X) = S 7P

® Y .(x; — X)? is known from our data

® But 02 is unknown and must be estimated
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Estimating the Variance: The Challenge

Recall: Variance of our slope estimator is

var(by | X) =
® Y .(x; — X)? is known from our data

® But 02 is unknown and must be estimated

Strategy: Use residuals to estimate o2
True errors: ;= y; — (bo + blx,-)

True variance: o2 = E(£7) E £?
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Estimating the Variance: The Solution
Step 1: Replace true errors with residuals
& =y; — (bo + b1x)

Step 2: Initial estimate using residuals

= -ZAZ —RSS (bo, br)
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Estimating the Variance: The Solution

Step 1: Replace true errors with residuals
& =y — (bo + bix;)

Step 2: Initial estimate using residuals

= -ZQ —RSS (bo, br)

Problem: This estimate is biased downward because
1 A A 1
;RSS(bo, b)) < ;RSS(bo, by)

Solution: Adjust degrees of freedom

1 A
52 = mRSS(bO, by)
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Properties of the Variance Estimator

Key Result:
1 A A
A2
= ——RSS(bg, b
o n—2 SS(bo, b1)

2
€

® It is unbiased: E(62) = o2

® Under normality:

® 52 is a random variable (depends on data)

2
. o
62 ~ HTE2X2(” -2)

Intuition:
® n — 2 appears because we estimated two parameters (bg, by)

® Compare to n — 1 when estimating mean only
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Distribution of 62

)
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Multiple Linear Regression
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Sampling distribution for MLR

For multiple linear regression, a similar but more complex calculation shows:

E(b|X)=hb
A A( ) cov(ISOA7 by) cov(bo b2) cov(léo, lgp)
var(b | X) = cov(b bi)  var(h)  cov(bi, b)) ... cov(by,b,)
= a?(X’X)*

® Estimates of coefficients are still unbiased!
® If X =0, then (X'X) is the covariance of X where

n
(X/X)u,v = Z Xi,uXi,v-
i=1

® Variance decreases as (X'X) is “larger” i.e., covariates have more variability

® The results hold rfgardless of the distribution of ¢;. But, if €; is normally
distributed, then b follows a multivariate normal distribution

® |n general, each estimated coefficient is not independent of the other estimated
coefficients

® Roughly speaking, dependence between coefficients will depend on how correlated
the corresponding covariates are
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From Simple to Multiple Linear Regression
Key Results for Multiple Linear Regression:

E(by | X) = by

o2

var(be | X) = o2 [(X'X)7Y],, # ————
(b1 1 X) = 02 (XX # = e

® Good news: Each coefficient remains unbiased
® Important change: Variance formula becomes more complex

® Now depends on all covariates, not just x
® QOther variables affect precision of by

® |nterpretation of b, changes: "effect holding other variables constant”
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Variance of Estimates: Independent Predictors

We simulate from:
Yi=Xi1+Xio+ei, e ~N(0,1)
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Variance of estimates

Uncorrelated Covariates Correlated Covariates
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Understanding Collinearity

Definition: High correlation between predictor variables

Extreme Case: Perfect correlation (p = 1)
® \When X,'71 = X,',gl
® Cannot separate effects of variables
® Multiple solutions give identical predictions

® Example: These models are equivalent

Yi=bo+ b1 Xi1+ boXio+ €
= by + (b1 + C)X,'71 + (b2 — C)Xi,2 + &
Practical Impact:
® Estimates become highly sensitive to random errors

® |arge changes in coefficients from sample to sample
® Standard errors increase dramatically
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Estimating Variance in Multiple Regression

Key Idea: Adjust for model complexity

Since b minimizes RSS:

1 ~ 1
= < =
nRSS(b) < nRSS(b)
Variance Estimator: 1
52 = —————RSS(b
O n— (P + 1) ( )

where:
® p+ 1 = number of coefficients (including intercept)
® n—(p+1) = residual degrees of freedom
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Estimating Variance in Multiple Regression

Key Idea: Adjust for model complexity

Since b minimizes RSS: 1

n

RSS(B) < %RSS(b)

Variance Estimator: 1
52—~ _RSS(b
O n— (P + 1) ( )

where:
® p+ 1 = number of coefficients (including intercept)
® n—(p+1) = residual degrees of freedom
Properties:

® Unbiased: E(62) = o2

. aD a2 2
® Under normality: 62 ~ .—=<x*(n—p—1)

Module 3: part 1 Spring 2025 23 /24



Key Takeaways: Multiple Regression

Properties Practical Implications

e Coefficients are unbiased

® Watch for collinearity
® Variance depends on:

® More variables — More complexity
° E”°r_ variance ® Need larger samples for precise
® Predictor spread estimation
® Predictor correlation

Design Principles:
® Collect enough data relative to model complexity

® Consider whether highly correlated predictors are both needed

® Balance model complexity against estimation precision
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