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Logistics

• Start Module 3 on inference and hypothesis testing

• Assessment for Module 2 due 2/20

Module 3: part 1 BTRY 6020 Spring 2025 2 / 24



Sampling Distributions
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Sample data vs Population distribution

• In the lab, you fit a model for house prices which included an interaction
between quality and age

• β̂age = −0.0045991

• What would happen if we gathered new data?
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Sample data vs Population distribution
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Estimator

• Statistic or estimator is a function which takes data as input, and outputs a
number

• Examples: Mean, Median, Regression coefficient

• If we have a model for how the data is generated, then we can also describe
the distribution of the estimator

Module 3: part 1 BTRY 6020 Spring 2025 6 / 24



Estimator

• Statistic or estimator is a function which takes data as input, and outputs a
number

• Examples: Mean, Median, Regression coefficient

• If we have a model for how the data is generated, then we can also describe
the distribution of the estimator

Module 3: part 1 BTRY 6020 Spring 2025 6 / 24



Sampling distribution of least squares estimators

Suppose the data is generated from our linear Gaussian model:

Yi = b0 + b1Xi + εi

where εi ∼ N (0, σ2
ε).

Key idea: Understanding how our estimates would vary if we repeated the
sampling process.

• High level strategy: Condition on observed covariates (X ) and analyze model
behavior

• We remain agnostic about covariate generation:
• Could be drawn from a distribution
• Could be fixed by experimenter

• We’ll focus on b̂1 as our primary coefficient of interest

Module 3: part 1 BTRY 6020 Spring 2025 7 / 24



Sampling distribution of least squares estimators

Suppose the data is generated from our linear Gaussian model:

Yi = b0 + b1Xi + εi

where εi ∼ N (0, σ2
ε).

Key idea: Understanding how our estimates would vary if we repeated the
sampling process.

• High level strategy: Condition on observed covariates (X ) and analyze model
behavior

• We remain agnostic about covariate generation:
• Could be drawn from a distribution
• Could be fixed by experimenter

• We’ll focus on b̂1 as our primary coefficient of interest

Module 3: part 1 BTRY 6020 Spring 2025 7 / 24



Sampling distribution intuition

Goal: Derive the sampling distribution of b̂1 step by step.
Starting with our model:

Yi = b0 + b1Xi + εi , εi ∼ N (0, σ2
ε)

b̂1 =
sxy

s2x
=

∑
i (xi − x̄)(yi − ȳ)∑

i (xi − x̄)2
(OLS formula)

=

∑
i (xi − x̄)(b0 + b1xi + εi )∑

i (xi − x̄)2
(Substitute yi )

= b0
∑
i

ki + b1
∑
i

kiXi +
∑
i

kiεi (Rearrange)

where ki =
xi−x̄∑
i (xi−x̄)2 are the standardized weights.

Key properties:
∑

i ki = 0 and
∑

i kixi = 1, leading to:

b̂1 = b1 +
∑
i

kiεi

Module 3: part 1 BTRY 6020 Spring 2025 8 / 24



Sampling distribution intuition

Goal: Derive the sampling distribution of b̂1 step by step.
Starting with our model:

Yi = b0 + b1Xi + εi , εi ∼ N (0, σ2
ε)

b̂1 =
sxy

s2x
=

∑
i (xi − x̄)(yi − ȳ)∑
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Expected Value of b̂1

Key Question: Is our estimator centered at the true value?
Using our simplified form: b̂1 = b1 +

∑
i kiεi

E (b̂1 | X ) = E (b1 +
∑
i

kiεi ) (Linearity)

= b1 +
∑
i

kiE (εi | X ) (Pull out constants)

= b1 +
∑
i

ki · 0 (Key assumption)

= b1

• Key Assumption: E (εi | X ) = 0

• Interpretation: b̂1 is an unbiased estimator

• Practical meaning:
• Each sample gives a different b̂1
• But they cluster around the true b1
• No systematic over/under-estimation
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Variance of b̂1

Key Question: How much does our estimator vary around its mean?

var(b̂1 | X ) = var(
∑
i

kiεi ) (From previous)

=
∑
i

k2
i var(εi | X ) (Independence)

= σ2
ε

∑
i

k2
i (Homoscedasticity)

=
σ2
ε∑

i (xi − x̄)2
=

σ2
ε

(n − 1)s2x

• Key Assumptions:
• var(εi | X ) = σ2

ε (constant variance)
• Independence of errors

• Normal Case: If εi ∼ N (0, σ2
ε), then: b̂1 | X ∼ N

(
b1,

σ2
ε

(n−1)s2x

)
• Practical Insights:

• Precision increases with sample size (n)
• More spread in X (larger s2x ) improves precision
• Error variance (σ2

ε) directly affects uncertainty
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Summary: Sampling Distribution of b̂1

Key Properties

• Unbiased: E (b̂1 | X ) = b1

• Variance: var(b̂1 | X ) =
σ2
ε

(n−1)s2x

Key Assumptions

• Zero mean errors

• Constant variance

• Independent errors

Practical Implications:

• Larger samples → Better precision

• More variable X → Better precision

• Noisier data → Less precision

• Normal errors → Normal sampling distribution

Module 3: part 1 BTRY 6020 Spring 2025 11 / 24



Normal Distribution

Figure: Distribution of b̂1
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Estimating the Variance: The Challenge

Recall: Variance of our slope estimator is

var(b̂1 | X ) =
σ2
ε∑

i (xi − x̄)2

• ∑
i (xi − x̄)2 is known from our data

• But σ2
ε is unknown and must be estimated

Strategy: Use residuals to estimate σ2
ε

True errors: εi = yi − (b0 + b1xi )

True variance: σ2
ε = E (ε2i ) ≈

1

n

∑
i

ε2i
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Estimating the Variance: The Solution

Step 1: Replace true errors with residuals

ε̂i = yi − (b̂0 + b̂1xi )

Step 2: Initial estimate using residuals

σ̂2
ε =

1

n

∑
i

ε̂2i =
1

n
RSS(b̂0, b̂1)

Problem: This estimate is biased downward because

1

n
RSS(b̂0, b̂1) ≤

1

n
RSS(b0, b1)

Solution: Adjust degrees of freedom

σ̂2
ε =

1

n − 2
RSS(b̂0, b̂1)
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Properties of the Variance Estimator

Key Result:

σ̂2
ε =

1

n − 2
RSS(b̂0, b̂1)

• σ̂2
ε is a random variable (depends on data)

• It is unbiased: E (σ̂2
ε) = σ2

ε

• Under normality:

σ̂2
ε ∼ σ2

ε

n − 2
χ2(n − 2)

Intuition:

• n − 2 appears because we estimated two parameters (b0, b1)

• Compare to n − 1 when estimating mean only
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Distribution of σ̂2
ε
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Multiple Linear Regression
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Sampling distribution for MLR

For multiple linear regression, a similar but more complex calculation shows:

E(b̂ | X ) = b

var(b̂ | X ) =

 var(b̂0) cov(b̂0, b̂1) cov(b̂0, b̂2) . . . cov(b̂0, b̂p)

cov(b̂0, b̂1) var(b̂1) cov(b̂1, b̂2) . . . cov(b̂1, b̂p)
. . . . . .


= σ2

ε(X
′X)−1

• Estimates of coefficients are still unbiased!

• If X̄ = 0, then (X′X) is the covariance of X where

(X′X)u,v =
n∑

i=1

xi,uxi,v .

• Variance decreases as (X′X) is “larger” i.e., covariates have more variability

• The results hold regardless of the distribution of εi . But, if εi is normally
distributed, then b̂ follows a multivariate normal distribution

• In general, each estimated coefficient is not independent of the other estimated
coefficients

• Roughly speaking, dependence between coefficients will depend on how correlated
the corresponding covariates are
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From Simple to Multiple Linear Regression

Key Results for Multiple Linear Regression:

E (b̂k | X ) = bk

var(bk | X ) = σ2
ε

[
(X′X)−1

]
kk

̸= σ2
ε∑

i (xi,k − x̄k)2

• Good news: Each coefficient remains unbiased

• Important change: Variance formula becomes more complex
• Now depends on all covariates, not just xk
• Other variables affect precision of b̂k

• Interpretation of bk changes: ”effect holding other variables constant”
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Variance of Estimates: Independent Predictors

We simulate from:

Yi = Xi,1 + Xi,2 + εi , εi ∼ N (0, 1)

Key point: When predictors are independent, estimates are precise
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Variance of estimates
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Understanding Collinearity

Definition: High correlation between predictor variables

Extreme Case: Perfect correlation (ρ = 1)

• When Xi,1 = Xi,2:
• Cannot separate effects of variables
• Multiple solutions give identical predictions

• Example: These models are equivalent

Yi = b0 + b1Xi,1 + b2Xi,2 + εi

= b0 + (b1 + c)Xi,1 + (b2 − c)Xi,2 + εi

Practical Impact:

• Estimates become highly sensitive to random errors

• Large changes in coefficients from sample to sample

• Standard errors increase dramatically
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Estimating Variance in Multiple Regression

Key Idea: Adjust for model complexity

Since b̂ minimizes RSS:
1

n
RSS(b̂) ≤ 1

n
RSS(b)

Variance Estimator:

σ̂2
ε =

1

n − (p + 1)
RSS(b̂)

where:

• p + 1 = number of coefficients (including intercept)

• n − (p + 1) = residual degrees of freedom

Properties:

• Unbiased: E (σ̂2
ε) = σ2

ε

• Under normality: σ̂2
ε ∼ σ2

ε

n−p−1χ
2(n − p − 1)
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Key Takeaways: Multiple Regression

Properties

• Coefficients are unbiased

• Variance depends on:
• Error variance
• Predictor spread
• Predictor correlation

Practical Implications

• Watch for collinearity

• More variables → More complexity

• Need larger samples for precise
estimation

Design Principles:

• Collect enough data relative to model complexity

• Consider whether highly correlated predictors are both needed

• Balance model complexity against estimation precision
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