
Lab 10

Logistic Regression
NFL field goals
In American football, if you can kick the football through the field goal you will get three points. This is the
example we use to illustrate in the lecture. Now we will use this data again to see how to implement Logistic
regression and how to interpret your results.
fileName <- "https://raw.githubusercontent.com/ysamwang/btry6020_sp22/main/lectureData/fg_data.csv"
fg_data <- read.csv(fileName)
head(fg_data)

## fg_result distance wind rain
## 1 1 21 8 FALSE
## 2 1 26 8 FALSE
## 3 1 52 8 FALSE
## 4 1 41 12 TRUE
## 5 0 52 12 TRUE
## 6 1 39 12 TRUE

There are 4099 observations with the following variables:

• fg_result: was the kick succesful or not
• distance: distance of the attempt in yards
• wind: wind speed at time of kick in mph
• rain: was it raining or not?

We would like to explore the association between fg_result with distance, wind and rain. Since the fg_result
is binary variable which only takes value 0 or 1, we will choose the binomial regression to model the NFL
data.

Mathematical model
θ(x) = E(Y |X = x)

log

(
θ(x)

1− θ(x)

)
= b0 + b1xd + b2xw + b3xr

Concepts:

• Probability of “success”: θ(x), given covariates are x, ranging from (0, 1).
• Odds: θ(x)

1−θ(x) , ranging from (0,∞).

• Logit function (log odds): log
(

θ(x)
1−θ(x)

)
, ranging from (−∞,∞).

• Odds ratio: θ(x2)/1−θ(x2)
θ(x1)/1−θ(x1) ; x1 and x2 are two individuals.

Implementation in R

mod_binom <- glm(fg_result ~ distance+ wind + rain,
family = "binomial", data = fg_data)
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summary(mod_binom)

##
## Call:
## glm(formula = fg_result ~ distance + wind + rain, family = "binomial",
## data = fg_data)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.818507 0.382270 17.837 < 2e-16 ***
## distance -0.117351 0.007871 -14.909 < 2e-16 ***
## wind -0.035539 0.012832 -2.770 0.00561 **
## rainTRUE -0.438537 0.261281 -1.678 0.09327 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1895.7 on 2065 degrees of freedom
## Residual deviance: 1589.5 on 2062 degrees of freedom
## (2033 observations deleted due to missingness)
## AIC: 1597.5
##
## Number of Fisher Scoring iterations: 5

Interpretation
The fitted model is

log

(
θ(x)

1− θ(x)

)
= 6.8185− 0.1174 ∗ xd − 0.0355 ∗ xw − 0.4385 ∗ xr

Suppose x1 and x2 are individuals whose covariates values which are the all the same, except that the wind
is different by 1: x2,w = x1,w + 1.

log
(

θ (x2)
1− θ (x2)

)
− log

(
θ (x1)

1− θ (x1)

)
=6.8185− 0.1174 ∗ x2,d − 0.0355 ∗ x2,w − 0.4385 ∗ x2,r − (6.8185− 0.1174 ∗ x1,d − 0.0355 ∗ x1,w − 0.4385 ∗ x1,r)
=− 0.0355 ∗ x2,w − (−0.0355 ∗ x1,w)
=− 0.0355 ∗ (x1,w + 1) + 0.0355 ∗ x1,w

=− 0.0355

Also,

log
(

θ (x2)
1− θ (x2)

)
− log

(
θ (x1)

1− θ (x1)

)
= log

(
θ(x2)/1− θ(x2)
θ(x1)/1− θ(x1)

)
⇒ θ(x2)/1− θ(x2)

θ(x1)/1− θ(x1) = exp(−0.0355)

Interpretation: If observation 1 and observation 2 have all the same covariates, but x1,w increases by 1
unit to x2,w, then the odds for Y2 are exp(−0.0355) times smaller (i.e., multiplicative) than the odds for Y1

Questions

• Based on the results above, interprete the coefficients for distance and rain.

• Can you determine “smaller” or “larger” in the interpretation by just looking at the coefficient?
• What conclusion can you draw by looking at the p values on the summary?
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Prediction
If a kick is from 35 yards, the wind speed is 10 mph, and it is not raining, then we estimate that

log

(
θ(x)

1− θ(x)

)
= 6.8185− 0.1174 ∗ 35− 0.0355 ∗ 10− 0.4385 ∗ 0 = 2.3545

θ(x)
1− θ(x) = exp(2.3545) = 10.5329

P (success) = θ(x) = exp(2.3545)
1 + exp(2.3545) = 0.9133

## We can use the predict function to get
newdata <- data.frame(distance = 35, wind = 10, rain = FALSE)

# on log-odds scale
predict(object = mod_binom, newdata = newdata, type="link")

## 1
## 2.35584
# on "probability of success" scale
predict(object = mod_binom, newdata = newdata, type="response")

## 1
## 0.9133973

Confidence interval

# Method 1: Profile likelihood confidence intervals.
# Perform better under the small to moderate sample sizes
confint(mod_binom)

## Waiting for profiling to be done...

## 2.5 % 97.5 %
## (Intercept) 6.08836899 7.58791161
## distance -0.13312726 -0.10224994
## wind -0.06051182 -0.01015531
## rainTRUE -0.93809447 0.08998582
# Method 2: Wald type confidence intervals
cbind(summary(mod_binom)$coefficients[,1]-1.96*summary(mod_binom)$coefficients[,2], summary(mod_binom)$coefficients[,1]+1.96*summary(mod_binom)$coefficients[,2])

## [,1] [,2]
## (Intercept) 6.0692586 7.56775639
## distance -0.1327784 -0.10192314
## wind -0.0606893 -0.01038880
## rainTRUE -0.9506486 0.07357484

Poisson Regression
In this dataset, we record some information regarding games, including competing teams, game season, how
much advantage of one team over another in the game. And the numbers of penalties which occurred in the
game is our interest.
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penalty_data <- read.csv("https://raw.githubusercontent.com/ysamwang/btry6020_sp22/main/lectureData/penalty_data.csv")
head(penalty_data)

## game_id home_team away_team abs_spread div_game reg_playoff
## 1 2018_01_ATL_PHI PHI ATL 1.0 0 REG
## 2 2018_01_BUF_BAL BAL BUF 7.5 0 REG
## 3 2018_01_CHI_GB GB CHI 6.5 1 REG
## 4 2018_01_CIN_IND IND CIN 1.0 0 REG
## 5 2018_01_DAL_CAR CAR DAL 2.5 0 REG
## 6 2018_01_HOU_NE NE HOU 6.0 0 REG
## penalty_count
## 1 26
## 2 19
## 3 13
## 4 15
## 5 19
## 6 12

There are 1088 observations with the following variables:

• game_id: unique id for game
• home_team: name of home team
• away_team: name of away team
• abs_spread: the absolute value of the betting spread. Roughly speaking, this is the number of points

the favored team is expected to win by. A larger value means the game is not expected to be close. We
might expect games that are not expected to be close to have less penalties because the refs are less
concerned

• div_game: Is the game between two teams in the same division (potentially rivals)
• reg_playoff: is the game a regular season game or a playoff game
• penalty_count: the number of penalties which occurred in the game

Mathematical model
Log function

log (E(Y |X = x)) = b0 + bs ∗ xs + bd ∗ xd + br ∗ xr
## Implementation in R
mod_possion <- glm(penalty_count ~ abs_spread + div_game

+ reg_playoff, family = "poisson", data = penalty_data)
summary(mod_possion)

##
## Call:
## glm(formula = penalty_count ~ abs_spread + div_game + reg_playoff,
## family = "poisson", data = penalty_data)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.345965 0.047211 49.691 < 2e-16 ***
## abs_spread -0.007416 0.002347 -3.160 0.00158 **
## div_game -0.039004 0.018133 -2.151 0.03147 *
## reg_playoffREG 0.233737 0.046657 5.010 5.45e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
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## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1528.0 on 1087 degrees of freedom
## Residual deviance: 1488.4 on 1084 degrees of freedom
## AIC: 6181.6
##
## Number of Fisher Scoring iterations: 4

Interpretation
The fitted model is

log (E[Y |X = x]) = 2.3460− 0.0074 ∗ xs − 0.0390 ∗ xd + 0.2337 ∗ xr

Suppose x1 and x2 are individuals whose covariates values which are the all the same, except that x2 is the
game between two teams in the same division, while x_1 is not: x2,d = 1, x1,d = 0.

log (E[Y |X = x2])− log (E[Y |X = x1])
=2.3460− 0.0074 ∗ x2,s − 0.0390 ∗ x2,d + 0.2337 ∗ x2,r − (2.3460− 0.0074 ∗ x1,s − 0.0390 ∗ x1,d + 0.2337 ∗ x1,r)
=− 0.0390 ∗ x2,d + 0.0390 ∗ x1,d

=− 0.0390 ∗ (x1,d + 1) + 0.0390 ∗ x1,d

=− 0.0390

then we also have
E[Y |X = x2]
E[Y |X = x1] = exp(−0.0390)

Interpretation: Suppose two observations have all the same covariate values except differ in div_game (xd)
that x2 is the game between two teams in the same division and x_1 is not, then the expected mean for the
number of penalties with covariates x1 is exp(−0.0390) times (smaller) the expected mean for the number of
penalties with covariates x2.

Questions

• Based on the results above, interprete the coefficients for abs_spread and reg_playoffREG.

• What conclusion can you draw by looking at the p values on the summary?

Prediction
If in a game, the number of points the favored team is expected to win by 5(abs_spread), and this team play
a regular season game with the rival in the same division, then we estimate that

log(E[Y |X = x]) = 2.3460− 0.0074 ∗ 5− 0.0390 ∗ 1 + 0.2337 ∗ 1 = 2.5037

E[Y |X = x] = exp(2.5037) = 12.22765

This means the expected number of penalties which occurred in this game is around 12 times.
## We can use the predict function
newdata <- data.frame(abs_spread = 5, div_game = 1, reg_playoff = "REG")

# predicted log of mean
predict(object = mod_possion, newdata = newdata, type="link")

## 1
## 2.503617
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# predicted mean
predict(object = mod_possion, newdata = newdata, type="response")

## 1
## 12.22664

Confidence interval

# Method 1: Profile likelihood confidence intervals.
# Perform better under the small to moderate sample sizes
confint(mod_possion)

## Waiting for profiling to be done...

## 2.5 % 97.5 %
## (Intercept) 2.25216371 2.437268425
## abs_spread -0.01203173 -0.002831288
## div_game -0.07460542 -0.003524408
## reg_playoffREG 0.14354741 0.326479820
# Method 2: Wald type confidence intervals
cbind(summary(mod_possion)$coefficients[,1]-1.96*summary(mod_possion)$coefficients[,2], summary(mod_possion)$coefficients[,1]+1.96*summary(mod_possion)$coefficients[,2])

## [,1] [,2]
## (Intercept) 2.25343138 2.438498628
## abs_spread -0.01201647 -0.002815976
## div_game -0.07454428 -0.003463906
## reg_playoffREG 0.14228968 0.325184530
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