
Lab 2

Y. Samuel Wang

2/7/2023

Intro
This lab will explore multiple linear regression and including polynomial terms.

Housing Data
In class, we fit a few models using the housing data that we’ve been considering in lecture. In lab, we’ll take
a deeper dive into the data set. First, let’s load the data
fileName <- url("https://raw.githubusercontent.com/ysamwang/btry6020_sp22/main/lectureData/estate.csv")
housing_data <- read.csv(fileName)

head(housing_data)

## id price area bed bath ac garage pool year quality style lot highway
## 1 1 360000 3032 4 4 yes 2 no 1972 medium 1 22221 no
## 2 2 340000 2058 4 2 yes 2 no 1976 medium 1 22912 no
## 3 3 250000 1780 4 3 yes 2 no 1980 medium 1 21345 no
## 4 4 205500 1638 4 2 yes 2 no 1963 medium 1 17342 no
## 5 5 275500 2196 4 3 yes 2 no 1968 medium 7 21786 no
## 6 6 248000 1966 4 3 yes 5 yes 1972 medium 1 18902 no

Recall that there are 522 observations with the following variables:

• price: in 2002 dollars
• area: Square footage
• bed: number of bedrooms
• bath: number of bathrooms
• ac: central AC (yes/no)
• garage: number of garage spaces
• pool: yes/no
• year: year of construction
• quality: high/medium/low
• home style: coded 1 through 7
• lot size: sq ft
• highway: near a highway (yes/no)

There is no age data in the table, but we can compute it on our own from the year variable
housing_data$age <- 2002 - housing_data$year

Polynomial regression
We can first fit a linear model to both the data using the age of the house.
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reg_linear <- lm(price ~ age, data = housing_data)

par(mfrow = c(2,2), mar = c(4, 4, 1, 1))
plot(housing_data$age, housing_data$price, cex.lab = .5, cex.axis = .5,

cex = .5, main = "Untransformed data", xlab = "age", ylab = "price")
abline(a = reg_linear$coef[1], b = reg_linear$coef[2], col = "gray", lwd = 2)
plot(housing_data$age, reg_linear$res, cex.lab = .5, cex.axis = .5,

cex = .5, main = "Untransformed data", xlab = "age", ylab = "residuals")
abline(h = 0, col = "red")
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Questions
• Does it look like the linear model is a good fit for the data? Why or why not?

As an alternative, we can also use polynomial regression. Let’s include the covariate of age squared.
## R requires you to use I(ageˆ2) instead of just including ageˆ2
reg_quad1 <- lm(price ~ age + I(ageˆ2), data = housing_data)
summary(reg_quad1)

##
## Call:
## lm(formula = price ~ age + I(age^2), data = housing_data)
##
## Residuals:
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## Min 1Q Median 3Q Max
## -280265 -55366 -21785 49671 432273
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 552349.97 15860.35 34.83 <2e-16 ***
## age -11922.03 795.81 -14.98 <2e-16 ***
## I(age^2) 93.34 9.26 10.08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 105100 on 519 degrees of freedom
## Multiple R-squared: 0.4218, Adjusted R-squared: 0.4196
## F-statistic: 189.3 on 2 and 519 DF, p-value: < 2.2e-16

The variables, age and age squared will be quite correlated, which as we will see on Wednesday can be a bad
thing. So we typically will want to use a transformation of the polynomial covariates which are not as highly
correlated. We will use the poly function which takes the covariate and the degree of the polynomial (in this
case 2) and return a set of covariates which act like age and age squared, but are not correlated. It’s also
easier to type out instead of including a bunch of terms by hand. The coefficients aren’t directly interpretable
since the covariates aren’t exactly age and age squared anymore, but we can see that they give the same
fitted values as before.
reg_quad2 <- lm(price ~ poly(age,2), data = housing_data)
summary(reg_quad2)

##
## Call:
## lm(formula = price ~ poly(age, 2), data = housing_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -280265 -55366 -21785 49671 432273
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 277894 4599 60.42 <2e-16 ***
## poly(age, 2)1 -1748855 105079 -16.64 <2e-16 ***
## poly(age, 2)2 1059186 105079 10.08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 105100 on 519 degrees of freedom
## Multiple R-squared: 0.4218, Adjusted R-squared: 0.4196
## F-statistic: 189.3 on 2 and 519 DF, p-value: < 2.2e-16
sum(abs(reg_quad1$fitted.values - reg_quad2$fitted.values))

## [1] 9.400537e-09

We can compare the RSS of the linear model and the model which includes the quadratic term:
sum((housing_data$price - reg_linear$fitted.values)ˆ2)

## [1] 6.852419e+12
sum((housing_data$price - reg_quad2$fitted.values)ˆ2)
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## [1] 5.730544e+12

Alternatively, we can calculate the R2 of each model:
summary(reg_linear)$r.squared

## [1] 0.3085985
summary(reg_quad1)$r.squared

## [1] 0.4217944
summary(reg_quad2)$r.squared

## [1] 0.4217944

We can also plot the fitted prices for each model. For this, we will use the predict function. The predict
function takes an lm object and a data frame of covariate observations. It then computes the predicted value
of the covariate observations based on the coefficients estimated in the lm object.
plot(housing_data$age, housing_data$price, xlab = "age", ylab = "price")
lines(2:120, predict(reg_linear, data.frame(age = 2:120)),

col = "cyan", lwd = 3)
lines(2:120, predict(reg_quad1, data.frame(age = 2:120)),

col = "navy", lwd = 3)
legend("topright", col = c( "cyan", "navy"),

legend = c("linear", "quadratic"), lwd = 2)
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Question:
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• With your neighbors, discuss which model you would use if you were fitting the data?
• What if you were trying to explain this model to a collaborator?
• What if you were just trying to predict what you should sell your house for?
• What if the house you are selling is 150 years old?
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Can we improve the quadratic model? Let’s see if we can just fit higher polynomials to the data. Using a 3rd
degree polynomial is called a cubic and using a 4th degree polynomial is called a quartic.
reg_cubic <- lm(price ~ poly(age,3), data = housing_data)
reg_quartic <- lm(price ~ poly(age,4), data = housing_data)

summary(reg_quad2)

##
## Call:
## lm(formula = price ~ poly(age, 2), data = housing_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -280265 -55366 -21785 49671 432273
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 277894 4599 60.42 <2e-16 ***
## poly(age, 2)1 -1748855 105079 -16.64 <2e-16 ***
## poly(age, 2)2 1059186 105079 10.08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 105100 on 519 degrees of freedom
## Multiple R-squared: 0.4218, Adjusted R-squared: 0.4196
## F-statistic: 189.3 on 2 and 519 DF, p-value: < 2.2e-16
summary(reg_cubic)

##
## Call:
## lm(formula = price ~ poly(age, 3), data = housing_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -293191 -55948 -22012 47322 420616
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 277894 4502 61.728 < 2e-16 ***
## poly(age, 3)1 -1748855 102857 -17.003 < 2e-16 ***
## poly(age, 3)2 1059186 102857 10.298 < 2e-16 ***
## poly(age, 3)3 -500361 102857 -4.865 1.52e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 102900 on 518 degrees of freedom
## Multiple R-squared: 0.4471, Adjusted R-squared: 0.4439
## F-statistic: 139.6 on 3 and 518 DF, p-value: < 2.2e-16
summary(reg_quartic)

##
## Call:
## lm(formula = price ~ poly(age, 4), data = housing_data)

6



##
## Residuals:
## Min 1Q Median 3Q Max
## -295682 -56477 -22001 47865 420627
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 277894 4504 61.696 < 2e-16 ***
## poly(age, 4)1 -1748855 102910 -16.994 < 2e-16 ***
## poly(age, 4)2 1059186 102910 10.292 < 2e-16 ***
## poly(age, 4)3 -500361 102910 -4.862 1.54e-06 ***
## poly(age, 4)4 70294 102910 0.683 0.495
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 102900 on 517 degrees of freedom
## Multiple R-squared: 0.4476, Adjusted R-squared: 0.4433
## F-statistic: 104.7 on 4 and 517 DF, p-value: < 2.2e-16
plot(housing_data$age, housing_data$price, xlab = "age", ylab = "price")

lines(2:120, predict(reg_linear, data.frame(age = 2:120)),
col = "cyan", lwd = 3)

lines(2:120, predict(reg_quad1, data.frame(age = 2:120)),
col = "navy", lwd = 3)

lines(2:120, predict(reg_cubic, data.frame(age = 2:120)),
col = "red", lwd = 3)

lines(2:120, predict(reg_quartic, data.frame(age = 2:120)),
col = "purple", lwd = 3)

legend("topright", col = c("cyan", "navy", "red", "purple"),
legend = c("linear", "quadratic", "cubic", "quartic"), lwd = 2)
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Question:

• Examine the RSS for each of the models. Each time we fit a higher order polynomial, the RSS decreases.
Will this always be the case or is it just a coincidence? Why do you think so?

• How would you decide which model to use?
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Multiple Linear Regression
The rest of today’s lab will have less instruction, so it is on you, as a budding statistician to provide a bit of
creativity and apply what we have learned so far. In addition, we will use this data set for the module 2
assessment.

We will be looking at recent data from the UK Brexit vote. If you, aren’t familiar you can read more about
the whole story here http://www.vox.com/2016/6/17/11963668/brexit-uk-eu-explained.

In particular, the response variable we will be using is the percentage of individuals who voted to remain in
the European Union in each local authority. We will be looking at several explanatory variables including

• Percentage of individuals born in the UK
• Percentage of individuals with no formal education beyond compulsory education
• Percentage of individuals working in manufacturing
• Percentage of individuals working in finance
• Percentage of individuals over the age of 60
• Percentage of individuals between the ages of 20 and 35

Each row in the data represents a local authority/distict in either England or Wales. The Brexit vote took
place in 2016, and the explanatory variables were collected in the 2011 census. Local Authorities with missing
data have been removed.
fileName <-
brexit.data <-

read.csv("https://raw.githubusercontent.com/ysamwang/btry6020_sp22/main/lab2/uk_data.csv")
head(brexit.data)

## geography uk_born no_edu mfct finance over_60
## 1 Darlington 0.9475295 0.2481226 0.09997144 0.03835639 0.2263366
## 2 County Durham 0.9675338 0.2750048 0.13156555 0.02221647 0.2360407
## 3 Hartlepool 0.9721932 0.3065959 0.11676861 0.02089125 0.2211066
## 4 Middlesbrough 0.9178539 0.2989068 0.08121437 0.02489596 0.1934081
## 5 Northumberland 0.9717588 0.2387226 0.09236833 0.02368942 0.2635178
## 6 Redcar and Cleveland 0.9776663 0.2842061 0.10318700 0.01957270 0.2520029
## over_20_less_than35 pct_remain
## 1 0.1926604 0.4382
## 2 0.1937371 0.4245
## 3 0.1911049 0.3043
## 4 0.2263821 0.3452
## 5 0.1636817 0.4589
## 6 0.1780406 0.3381

Questions

• What direction do you think the association is between each of these variables?
• What strength do you think the association is between each of these variables?

Again, we’ll use the pairs command to plot the many pairs of variables at once. Note that we’ve excluded
the first column here, since that’s just the name of local authority
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pairs(brexit.data[, -1])
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Questions

• Does this look like what you might expect?
• What sticks out?
• Do the relationships look roughly linear?

Multivariate Regression
When there are multiple variables, we still use the regular lm command, but we need to specify more variables
in our formula. Notice now on the right hand side of the ∼, we have multiple variables which are separated
by the + sign. We can add additional variables simply by using the + sign.
output <- lm(pct_remain ~ uk_born + no_edu, data = brexit.data)
summary(output)

##
## Call:
## lm(formula = pct_remain ~ uk_born + no_edu, data = brexit.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.132640 -0.035044 -0.005769 0.030399 0.206090
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) 1.01641 0.02606 39.00 <2e-16 ***
## uk_born -0.32934 0.03220 -10.23 <2e-16 ***
## no_edu -1.19710 0.06604 -18.13 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05556 on 341 degrees of freedom
## (4 observations deleted due to missingness)
## Multiple R-squared: 0.6818, Adjusted R-squared: 0.6799
## F-statistic: 365.3 on 2 and 341 DF, p-value: < 2.2e-16

We can see from the summary of our model that the estimated model is

ŷi = b̂0 + b̂uk bornxi,uk born + b̂no eduxi,no edu

where buk_born = −.33 and bno_edu = −1.20.

We can get the residuals and fitted values from the lm objects, and we can look at the values for specific
geographic areas. For instance, “Eden” is the 23 row in the list. We can see that by using the which function.
The function returns the index for which the statement evalues to “TRUE.” This means the 23rd element of
geography vector is equal to “Eden.” In the residual and fitted values vector, the 23rd element corresponds to
the values for “Eden”
which(brexit.data$geography == "Eden")

## [1] 23
output$residuals[23]

## 23
## 0.03981415
output$fitted.values[23]

## 23
## 0.4269859

Questions

• How would you interpret each of the estimated coefficients above?
• Does the magnitude (size) of the coefficients agree with what you would’ve guessed?

Now is your chance to explore the data yourself. Using the form above, fit a regression and include variables
which you think might be associated with the percentage of people voting to remain in the EU. As you fit
your models, check to make sure that the associations are roughly linear.

Try fitting multiple models (at least 3 or 4) and think about what makes sense to investigate and what
variables might need transformations.

Questions

• Look at the r2 value for each model. As you include more variables, what happens to the R2 value?
Does this always happen?

• When you include more variables, how do the regression coefficients change for the existing variables?

After you are done, discuss your findings with your neighbor and pat yourself on the back. Congratulations,
you’re on your way to being a statistician!
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Questions

Questions to discuss with your neighbor.

• How did you decide which variables to include and which variables not to include?
• What is the proper interpretation of your regression coefficients?
• What are the signs of each of the coefficients?
• What are the relative sizes of the coefficients?
• Does this make sense with what we know about the world?
• What would we need to be careful about in interpreting these models?
• What other variables (that weren’t available) would also be good to include?
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