Lab 3

Spring 2025

Variable transformations

The World Bank provides valuable data on a number of public health and economic indicators for countries
across the globe!. Today, we will be looking indicators which might predict infant mortality, which is the
number of children (per 1000 births) who die before the age of 1.

Questions
e What factors do you think might affect or correlate with infant mortality?

In particular, we will be looking at 2 specific factors which might correlate well with infant mortality (measured
in 2015) - GDP per capita (roughly how much income does the average individual produce) as measured in
2013 and the proportion of the population with access to electricity (as measured in 2012). I have removed
countries which were missing data for any of the variables.

fileName <- "https://raw.githubusercontent.com/ysamwang/btry6020_sp22/main/lab2/world_bank_data.csv"
wb.data <- read.csv(fileName)
head(wb.data)

## country elec_acc inf_mort gdp_capita
## 1 Andorra 100.00000 2.1 42806.5226
## 2 Afghanistan 43.00000 66.3 666.7951
## 3 Angola 37.00000 96.0 5900.5296
## 4 Albania 100.00000 12.5 4411.2582
## 5 United Arab Emirates 97.69783 5.9 42831.0891
## 6 Argentina 99.80000 11.1 14443.0657
Questions

e What direction do you think the association is between each of these variables?
e What strength do you think the association is between each of these variables?

We can use the pairs command to plot the many pairs of variables at once. Note that we’ve excluded the
first column here, since that’s just the name of countries

LYou can access the data at http://data.worldbank.org/


http://data.worldbank.org/

pairs(wb.datal, -1])
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Questions

e Does this look like what you might expect?
e What sticks out?
e Do the relationships look linear?

The relationship between electricity and infant mortality looks roughly linear, but the relationship between
GDP per capita and infant mortality does not. Let’s see how we might transform the data. The log
function by default returns the natural log (base e). Let’s plot a few transformations and see what makes the
relationship linear.

# using the par(mfrow = c(r, c)) puts multiple
# plots together. The plots are arranged so
# that there are T rows and c columns

par (mfrow = c(2,2))

# first argument is the X vartiable, second argument is the Y wvariable

# main spectifies the title, zlab specifies the = azis label

# and ylab specifies the y azis label

plot(wb.data$gdp_capita, wb.data$inf_mort, main = "Untransformed",
xlab = "gdp per capita", ylab = "Infant Mortality (per 1000)")

plot(wb.data$gdp_capita, log(wb.data$inf_mort),
main = "log(mortality) ~ gdp/capita",
xlab = "gdp per capita", ylab = "log(mortality)")

plot(log(wb.data$gdp_capita), wb.data$inf_mort,
main = "mortality ~ log(gdp/capita)",



xlab = "log(gdp per capita)", ylab = "mortality")

plot(log(wb.data$gdp_capita), log(wb.data$inf_mort),
main = "log(mortality) ~ log(gdp/capita)",
xlab = "log(gdp/capita)", ylab = "log(mortality)")
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The plots correspond to the models:
E(mortality | gdp/capita) = by + bygdp/capita

E(log(mortality) | gdp/capita) = by + b1gdp/capita
E(mortality | gdp/capita) = by + by log(gdp/capita)
E(log(mortality) | gdp/capita) = by + by log(gdp/capita)

Questions

e Which transformation looks most linear?
o How do we interpret the b; parameter in each model?

The transformation that looks most linear takes the log of both mortality and gdp per capita. We can
estimate the transformed and untransformed models now using the 1m command.

# Untransformed data
untransformed.reg <- lm(inf_mort ~ gdp_capita, data = wb.data)

summary (untransformed.reg)

##
## Call:
## lm(formula = inf_mort ~ gdp_capita, data = wb.data)



##
## Residuals:

## Min 1Q Median 3Q Max

## -24.011 -14.633 -5.749 8.625 67.583

#t

## Coefficients:

#t Estimate Std. Error t value Pr(>|t])

## (Intercept) 3.168e+01 1.743e+00 18.171 < 2e-16 **x

## gdp_capita -5.523e-04 7.093e-05 -7.787 5.68e-13 *x**

##H -—-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 19.07 on 176 degrees of freedom

## Multiple R-squared: 0.2562, Adjusted R-squared: 0.252

## F-statistic: 60.63 on 1 and 176 DF, p-value: 5.678e-13

# regression with transformed data
transformed.reg <- 1m(log(inf_mort) ~ log(gdp_capita), data = wb.data)

summary (transformed.reg)

##

## Call:

## 1m(formula = log(inf_mort) ~ log(gdp_capita), data = wb.data)
##

## Residuals:

## Min 1Q Median 3Q Max

## -1.24132 -0.34865 -0.00525 0.34525 2.40377

##

## Coefficients:

#it Estimate Std. Error t value Pr(>ltl)

## (Intercept) 8.11682 0.24882 32.62 <2e-16 *x*x

## log(gdp_capita) -0.63135  0.02848 -22.17 <2e-16 **x

## -—-

## Signif. codes: O '*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.5554 on 176 degrees of freedom
## Multiple R-squared: 0.7363, Adjusted R-squared: 0.7348
## F-statistic: 491.3 on 1 and 176 DF, p-value: < 2.2e-16

We can also look at the residuals plotted against fitted values and fitted values vs observed values for both
models. What does this suggest about how each model fits our data?

par (mfrow = c(1,2))

plot(untransformed.reg$fitted.values, untransformed.reg$residuals, main = "Untransformed",
xlab = "fitted values", ylab = "residuals")
plot(transformed.reg$fitted.values, transformed.reg$residuals, main = "Transformed",

xlab = "fitted values", ylab = "residuals")
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par (mfrow = c(1,2))
plot(untransformed.reg$fitted.values, wb.data$inf_mort, main = "Untransformed",
xlab = "fitted values", ylab = "Obs Values")

fitted.values.log <- exp(transformed.reg$fitted.values + summary(transformed.reg)$sigma2/2)
plot(fitted.values.log,wb.data$inf_mort, main = "Transformed",
xlab = "fitted values", ylab = "Obs Values")
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Questions

What do you notice about the fitted values for the untransformed data? Hint: What is the range of
fitted values, and does it make sense given the variable we are predicting?

Compare the R? from both regressions. What does this suggest about which explanatory variable is a
better predictor of infant mortality?

Why do you think this is true?

Note that we aren’t exactly comparing apples to apples here because one regression has log(mortality)
as the response while the other uses mortality untransformed. Is there a way you could make the
comparison more fair?

Which model would you use if you are trying to predict infant mortality for a country not in the data
set? Which model would you use if you are trying to explain to a collaborator? Which model would
you use if you are trying to test if infant mortality is associated with gdp/capita?

Repeat the exercise but with electricity access? Which model would you select when using electricity
access? What about when you include both electricity access and gdp per capita?



Housing Data

In class, we’ve been discussing data about housing prices and in last week’s lab, we considered modeling the
home prices with polynomial regression. As a quick refresher, recall that there are 522 observations with the
following variables:

e price: in 2002 dollars

e area: Square footage

e bed: number of bedrooms

e bath: number of bathrooms

o ac: central AC (yes/no)

e garage: number of garage spaces
e pool: yes/no

e year: year of construction

o quality: high/medium/low

e home style: coded 1 through 7

o lot size: sq ft

o highway: near a highway (yes/no)

fileName <- url("https://raw.githubusercontent.com/ysamwang/btry6020_sp22/main/lectureData/estate.csv")
housing_data <- read.csv(fileName)

head (housing_data)

## 1id price area bed bath ac garage pool year quality style lot highway

# 1 1 360000 3032 4 4 yes 2 no 1972 medium 1 22221 no
## 2 2 340000 2058 4 2 yes 2 no 1976 medium 1 22912 no
## 3 3 250000 1780 4 3 yes 2 no 1980 medium 1 21345 no
## 4 4 205500 1638 4 2 yes 2 no 1963 medium 1 17342 no
## 5 5 275500 2196 4 3 yes 2 no 1968 medium 7 21786 no
## 6 6 248000 1966 4 3 yes 5 yes 1972 medium 1 18902 no

housing_data$age <- 2002 - housing_data$year

Categorical variables

In our data, Housing Style is coded 1 through 7
table (housing_data$style)

##
## 1 2 3 4 5 6 7 9 10 11
## 214 58 64 11 18 18 136 1 1 1

In class, we described how to include categorical variables in a regression by picking a reference category
and then including binary variables for the other categories. R does this entire process for us inside the lm
command.

###

# Include style

modell <- lm(price ~ area + style, data = housing_data)
summary (modell)

##

## Call:

## 1lm(formula = price ~ area + style, data = housing_data)
##

## Residuals:



## Min 1Q Median 3Q Max
## -271624 -34852 -5465 28660 312589

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) -1.030e+05 1.126e+04 -9.152 < 2e-16 **x*

## area 1.875e+02 5.857e+00 32.021 < 2e-16 *x*x*

## style -1.286e+04 1.625e+03 -7.912 1.54e-14 *xx*

## ——-

## Signif. codes: O '**xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 74820 on 519 degrees of freedom
## Multiple R-squared: 0.7069, Adjusted R-squared: 0.7058
## F-statistic: 625.8 on 2 and 519 DF, p-value: < 2.2e-16

#i#t#

# Include style as a factor (i.e., make sure R knows it is categorical data)
model2 <- lm(price ~ area + as.factor(style), data = housing_data)

summary (model2)

##

## Call:

## 1m(formula = price ~ area + as.factor(style), data = housing_data)
##

## Residuals:

## Min 1Q Median 3Q Max

## -273461 -34602 -4571 28259 310176

##

## Coefficients:

# Estimate Std. Error t value Pr(>|tl)

## (Intercept) -1.162e+05 1.286e+04 -9.034 < 2e-16 **x
## area 1.882e+02 6.094e+00 30.886 < 2e-16 **x
## as.factor(style)2 -2.040e+04 1.107e+04 -1.843 0.0659 .
## as.factor(style)3 -1.785e+04 1.066e+04 -1.674 0.0948 .
## as.factor(style)4 -3.446e+04 2.311e+04 -1.491 0.1366

## as.factor(style)5 -8.499e+04 1.856e+04 -4.578 5.90e-06 **x
## as.factor(style)6 -7.597e+04 1.867e+04 -4.068 5.49e-05 **x*
## as.factor(style)7 -7.854e+04 1.043e+04 -7.528 2.35e-13 *xx*
## as.factor(style)9 2.033e+04 7.504e+04 0.271 0.7866

## as.factor(style)10 -8.684e+04 7.597e+04 -1.143 0.2535

## as.factor(style)1l -6.179e+04 7.493e+04 -0.825  0.4100

## ——-

## Signif. codes: O '**¥xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 74750 on 511 degrees of freedom
## Multiple R-squared: 0.7119, Adjusted R-squared: 0.7063
## F-statistic: 126.3 on 10 and 511 DF, p-value: < 2.2e-16

Questions

e What is the reference category that R is using?

e How would you interpret the estimated coefficients?

e What is the estimated difference in home price when comparing a house which is style 2 against a house
which is style 47



Interaction terms

Last week, we examined how home prices were associated with age and modeled the relationship with
polynomial regressions. If you recall, none of the models fit particularly well. Turns out, using a log
transformation on housing price seems to make the relationship more linear.

model3 <- 1m(log(price) ~ age, data = housing data)
par (mfrow = c(1,2))

plot(model3$fitted.values, log(housing_data$price), xlab = "Fitted Values", ylab = "Obs Values")
plot(model3$fitted.values, model3$residuals, xlab = "Fitted Values", ylab = "Residuals")
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We see from the estimated coefficients that an older home is typically less expensive than a newer home.
summary (model3)
##
## Call:
## lm(formula = log(price) ~ age, data = housing_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.86899 -0.24789 -0.07036 0.22367 1.46833
##
## Coefficients:
#Hit Estimate Std. Error t value Pr(>|t])
## (Intercept) 12.9356873 0.0342333 377.87 <2e-16 **x*
## age -0.0142770 0.0008717 -16.38 <2e-16 **x
## ———
## Signif. codes: O '**xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.3509 on 520 degrees of freedom
## Multiple R-squared: 0.3403, Adjusted R-squared: 0.339
## F-statistic: 268.2 on 1 and 520 DF, p-value: < 2.2e-16



However, as we discussed in class, we might also expect that the association of price and age depends on the
quality of the home. We can fit a model with the interaction between age and quality to see

# We can include each covariate and the interaction term in the lm formula
modeld <- Im(log(price) ~ age + quality + age * quality, data = housing_data)
summary (model4d)

##

## Call:

## lm(formula = log(price) ~ age + quality + age * quality, data = housing_data)
##

## Residuals:

## Min 1Q Median 3Q Max

## -0.70937 -0.16798 -0.00132 0.14146 0.82006

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) 13.2543198 0.0518526 255.615 <2e-16 ***
## age -0.0045991 0.0026210 -1.755 0.0799 .
## qualitylow -1.0931907 0.0888987 -12.297  <2e-16 ***
## qualitymedium -0.6222432 0.0631323 -9.856 <2e-16 *x*x
## age:qualitylow 0.0023796 0.0029750 0.800 0.4241

## age:qualitymedium -0.0003452 0.0028204 -0.122 0.9026

## ———

## Signif. codes: 0 '*k*x' 0.001 'x*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.2524 on 516 degrees of freedom
## Multiple R-squared: 0.6615, Adjusted R-squared: 0.6582
## F-statistic: 201.7 on 5 and 516 DF, p-value: < 2.2e-16

# Alternatively, tf we only explicitly spectify the interaction term, the main
# effects are automatically included
model5 <- Ilm(log(price) ~ age * quality, data = housing_data)

summary (model5)

##

## Call:

## 1m(formula = log(price) ~ age * quality, data = housing_data)
##

## Residuals:

## Min 1Q Median 3Q Max

## -0.70937 -0.16798 -0.00132 0.14146 0.82006

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

## (Intercept) 13.2543198 0.0518526 255.615 <2e-16 **x*
## age -0.0045991 0.0026210 -1.755 0.0799 .

## qualitylow -1.0931907 0.0888987 -12.297 <2e-16 **x*
## qualitymedium -0.6222432 0.0631323 -9.856 <2e-16 ***
## age:qualitylow 0.0023796 0.0029750 0.800 0.4241

## age:qualitymedium -0.0003452 0.0028204 -0.122 0.9026

## ———

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.2524 on 516 degrees of freedom
## Multiple R-squared: 0.6615, Adjusted R-squared: 0.6582
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## F-statistic: 201.7 on 5 and 516 DF, p-value: < 2.2e-16

Questions

e Write out the form of the model that is being estimated

e Looking at the estimated coefficients, are you surprised by the results?

e Do you think the relationship between age and price differs depending on quality?

o What are some reasons you might include the interaction term in your model?

e What are some reasons you might choose to not include the interaction term in your model?
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