
Lab 4

Spring 2025

Simulations
Today’s lab will primarily be using simulated data. Often times, we want to assess how a statistical method
might perform in practice. We can apply the methods to real data and see if the results make, but the actual
performance can be hard to assess if we don’t know what the “correct answer” is. Simulations allow us to
assess performance by generating data where we know the “correct answer.” Simulations are also helpful
because they allow us to approximate quantities that might be hard to calculate exactly.

Simulations for approximation
Steph Curry and Sabrina Ionescu are both basketball players and recently competed against each other in a 3
point shooting contest (3 pointers are shots made from beyond a certain distance). Curry’s career 3 point
shooting percentage (the proportion of times he succesfully makes a 3 point shot) is .427 and Ionescu’s career
3 point shooting percentage is .377

Suppose the players are playing a game where they each take 10 3 point shots, and compare who makes more.
Let’s assume that, for each player, every free throw has the same probability of success and is independent of
the other free throws. Calculating the proportion of times Steph will win, Sabrina will win, or there will be a
tie is not so easy, but we can easily simulate the outcomes. The code below does exactly that. We use 1000
replications of data to approximate what would happen if we did this an infinite amount of times
prob.curry <- .427
prob.ionescu <- .377

## Number of games we will simulate
sim.size <- 1000
## number of free throws in each game
num.shots <- 10

winner <- rep("", sim.size)

for(i in 1:sim.size){

# Number of succesful free throws for durant
curry <- rbinom(n = 1, size = num.shots, prob = prob.curry)

# Number of succesful free throws for beal
ionescu <- rbinom(n = 1, size = num.shots, prob = prob.ionescu)

if(curry > ionescu){
winner[i] <- "curry"
} else if (ionescu > curry){

winner[i] <- "ionescu"
} else{
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winner[i] <- "tie"
}

}
table(winner) / sim.size

## winner
## curry ionescu tie
## 0.528 0.323 0.149

Question

• What do you think would happen if they each shot 20 free throws instead of 10? Would the probability
of victory for each player change? Why or why not?

• Test it out. Change num.ft to 20, 50, 100 and see what happens

Sampling Distributions
We will use a small simulation study to examine how the sampling distribution of estimated coefficients
depends on In particular, we will simulate many different data sets and record the estimated coefficients each
time. We can then look at the distribution of the estimates, and by changing certain features of the data
generating process, we can see how it effects the distribution of the resulting estimates. The true value of
each coefficient is 1. Play around with each of the parameters below, and see how the resulting sampling
distribution of the estimated coefficients changes.
#### Change the code below ####

# number of observations in the sample
n <- 8
# number of covariates (must be less than n)
p <- 3
# standard deviation of the X values
x.sd <- 1
# covariance of the X values (choose a positive value less than x.sd)
rho <- .95

# distribution of the errors (choose either "normal" or "gamma" or "T")
# gamma distribution is skewed, T distribution has outliers
errDist <- "gamma"

# Standard deviation of the epsilon terms
err.sd <- 1

#### Don't change the code below ####
# Number of times we will simulate a new data set
sim.size <- 5000
# True coefficients
beta <- rep(1, p)
rec <- matrix(0, sim.size, p)
# Covariance matrix of X
cov.mat <- matrix(rho, p,p); diag(cov.mat) <- x.sdˆ2

# Helper function to draw errors
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drawErrors <- function(n, sd = 1, type = "normal"){
if(type == "normal"){

err <- rnorm(n)
} else if (type == "gamma"){

err <- rgamma(n, 1, 1) - 1
} else if (type == "T"){

err <- rt(n, df = 3)
}
return(err * sd)

}

for(i in 1:sim.size){
X <- mvtnorm::rmvnorm(n, sigma = cov.mat)
Y <- X %*% beta + drawErrors(n, sd = err.sd, type = errDist)

mod1 <- lm(Y~X - 1)
rec[i, ] <- mod1$coefficients

}

par(mfrow = c(1,3))
hist(drawErrors(1000, sd = err.sd, type = errDist), main = "Distribution of Errors", xlab = "epsilon", freq = F)
hist(rec[, 1], main = "Estimated Coefficient", xlab = "b1", freq = F)
abline( v = 1, col = "red")
if(p > 1){
plot(rec[ ,1], rec[ ,2], xlab = "beta1", ylab = "b2", main = "Estimated Coefficients", pch = 19, cex = .5)
abline(v = 1, h = 1, col = "red")

}
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Questions

• What is the mean of the distribution of b̂1 in each case?
• How do the variances of the two distributions (normal errors vs gamma errors) compare? How do the

shapes compare?
• Increase x.sd from 1 to 3 and re-run the simulation. This will cause the X values to be more spread out.

What happens to to the distributions of b̂1?
• Change x.sd back to 1 and set n to 50. What happens to to the distributions of hatb1? How do

the variances of the two distributions (normal errors vs gamma errors) compare? How do the shapes
compare?
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Sampling distribution of σ̂2
ε

Let’s take a look at the sampling distribution of σ̂2
ε . We also record three different estimators of the variance

of εi:

• An estimate which uses the true errors, εi. In practice, we can’t compute this since we won’t know the
true errors, but since this is simulated data, we can. This would be the same as using the residuals if
we knew the true linear coefficients.

1
n

∑
i

ε2
i

• An estimate which uses the residuals, ε̂i = yi − ŷi = yi −
∑p

k b̂kxi,k, but doesn’t adjust for the fact that
we are using residuals and not the true errors.

1
n

∑
i

ε̂2
i

• An estimate which uses the residuals ε̂i = yi −
∑p

k b̂kxi,k, but does adjust for the fact that we are using
residuals and not the true errors by dividing by n− p− 1

1
n− p− 1

∑
i

ε2
i

#### Change the code below ####

# number of observations in the sample
n <- 20
# number of covariates (must be less than n)
p <- 3
# standard deviation of the X values
x.sd <- 1
# covariance of the X values (choose a positive value less than x.sd)
rho <- 0

# distribution of the errors (choose either "normal" or "gamma" or "T")
# gamma distribution is skewed, T distribution has outliers
errDist <- "gamma"

# Standard deviation of the epsilon terms
err.sd <- 1

#### Don't change the code below ####
# Number of times we will simulate a new data set
sim.size <- 10000
# True coefficients
beta <- rep(1, p)
rec <- matrix(0, sim.size, 5)
# Covariance matrix of X
cov.mat <- matrix(rho, p,p); diag(cov.mat) <- x.sdˆ2

# Helper function to draw errors
drawErrors <- function(n, sd = 1, type = "normal"){

if(type == "normal"){
err <- rnorm(n)
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} else if (type == "gamma"){
err <- rgamma(n, 1, 1) - 1

} else if (type == "T"){
err <- rt(n, df = 3)

}
return(err * sd)

}

for(i in 1:sim.size){
X <- mvtnorm::rmvnorm(n, sigma = cov.mat)
errs <- drawErrors(n, sd = err.sd, type = errDist)
Y <- X %*% beta + errs

mod1 <- lm(Y ~ X)
# RSS(b) / n: we can calculate this using the true errors, which we know because
# it's a simulation, but in practice we would need to know the true coefficients
# to calculate the true errors
true_errors <- sum(errsˆ2) / n

# RSS(b hat) / n: we can calculate this using the residuals, but we don't
# adjust for the fact that we are using residuals and not the true errors
resid_unadjust <- sum(mod1$resˆ2) / n

# RSS(b hat) / (n-p): we can calculate this using the residuals, and now we
# adjust for the fact that we are using residuals and not the true errors
resid_adjust <- sum(mod1$resˆ2) / (n-p - 1)

# record each of the estimators
rec[i, ] <- c(true_errors,

resid_unadjust,
resid_adjust, mean(errsˆ2), mean(mod1$residualsˆ2))

}

We can first compare the RSS using the true coefficients to the RSS using the estimated coefficients. In the
plot below, each point represents the outcome of one replication.
plot(rec[,4], rec[,5], xlab = "RSS/n using True coefficients", ylab = "RSS/n using estimated coefficients", pch = 19, cex = .5)
abline(a = 0, b = 1, lwd= 2, col = "Red")
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Questions

• Given the plot, what can you conclude about the RSS using the true coefficients vs the RSS using the
estimated coefficients?

• How would this change if you changed p and n?

We can plot histograms of each of the estimators of σ̂2
ε .

par(mfrow = c(1,3))
# We're using some fancy code to label the axis
# We won't cover this because of time, but the following is a good tutorial
# if you are interested in learning more:
# https://www.dataanalytics.org.uk/axis-labels-in-r-plots-using-expression/

# Histogram of estimator using true errors
hist(rec[, 1], main = "True Errors", xlab = expression(hat(sigma)[epsilon]ˆ2))
# draw a red vertical line at the mean
abline(v = mean(rec[, 1]), col = "red", lwd = 2)

# Histogram of estimator using residuals, but unadjusted
hist(rec[, 2], main = "Residuals Unadjusted", xlab = expression(hat(sigma)[epsilon]ˆ2))
# draw a red vertical line at the mean
abline(v = mean(rec[, 2]), col = "red", lwd = 2)

# Histogram of estimator using residuals, but adjusted
hist(rec[, 3], main = "Residuals Adjusted", xlab = expression(hat(sigma)[epsilon]ˆ2))
# draw a red vertical line at the mean
abline(v = mean(rec[, 3]), col = "red", lwd = 2)
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We can calculate the mean and variance of each of the estimators. As we can see, the mean of the estimators
using the true errors and the mean of the estimator which uses the residuals and adjusts for them are pretty
close to the actual value of σ2

ε = 1. However, the mean of the estimator using the residuals and not adjusting
is further from the true value.
# mean and variance of the estimator using the true errors
print("Using true coefficients")

## [1] "Using true coefficients"

mean(rec[, 1])

## [1] 1.002261

var(rec[, 1])

## [1] 0.3978981

# mean and variance of the estimator using the residuals but not adjusting
print("Using estimated coefficients without adjusting")

## [1] "Using estimated coefficients without adjusting"

mean(rec[, 2])

## [1] 0.8019886

var(rec[, 2])

## [1] 0.2687509

# mean and variance of the estimator using the residuals and adjusting
print("Using estimated coefficients with adjusting")
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## [1] "Using estimated coefficients with adjusting"

mean(rec[, 3])

## [1] 1.002486

var(rec[, 3])

## [1] 0.4199233

Questions:

• Keep n = 20 but increase p to be 5, 10, 15. What happens to the mean of each of the estimators? What
happens to the variance of each of the estimators? Keep p = 3 but increase n to be 50, 100, 150. What
happens to the mean of each of the estimators? What happens to the variance of each of the estimators?

Confidence Intervals
We will start by seeing how to calculate a confidence interval in R.
# number of observations in the sample
n <- 20
# number of covariates (must be less than n)
p <- 5

# Draw p covariates which are all independent of each other
X <- mvtnorm::rmvnorm(n, sigma = diag(p))

# The true coefficients are 1
beta <- rep(1, p)
# draw Y with no Y intercept and Gaussian errors
Y <- X %*% beta + rnorm(n)

# fit the model
mod1 <- lm(Y~X1 + X2 + X3 + X4 + X5, data = data.frame(X))

# The confidence interval for each coefficient can be calculated using confint
confint(mod1, level = .95)

## 2.5 % 97.5 %
## (Intercept) -0.73227717 1.046222
## X1 0.56825536 2.078015
## X2 0.35946896 1.749718
## X3 0.41708777 1.939599
## X4 -0.21646720 1.890987
## X5 -0.02732268 1.555570

The confidence interval you calculate will be different from your neighbor’s interval (it will even change each
time you knit this document), and it either does or does not contain the true parameter (which happens
to be 1). So it doesn’t make sense to say “there’s a 95% chance that [.49, 1.5] (or whatever numbers you
actually got) contains 1.”

Questions

• Check around the room and see how many people got a confidence interval that does not contain 1.
What proportion of the students have a confidence interval that contains the truth? Hopefully it’s close
to .95.
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Instead of making a statement about a specific interval, the 95% chance describes the probability that the
procedure will contain the truth when applied to a new set of data. Or thought another way, when repeating
the procedure an infinite number of times with new data each time, 95% of the resulting confidence intervals
will contain the true parameter. We use the phrase:

“We are 95% confident that the true coefficient is between [.49, 1.5] (or whatever numbers you actually got)”

as a shorthand way of encoding that longer explanation.

We can also get Confidence intervals for the conditional mean and prediction intervals
## The confidence interval for conditional mean
# covariate values at which to get confidence interval for conditional mean
newdf <- data.frame(X1 = 1, X2 = 5, X3 = .5, X4 = 2, X5 = .5)
predict(mod1, newdata = newdf, interval = "confidence")

## fit lwr upr
## 1 9.398827 5.467471 13.33018

## The prediction interval
# covariate values at which to get prediction interval
newdf <- data.frame(X1 = 1, X2 = 5, X3 = .5, X4 = 2, X5 = .5)
predict(mod1, newdata = newdf, interval = "prediction")

## fit lwr upr
## 1 9.398827 4.774565 14.02309

Questions

• Compare the length of the confidence interval for the conditional mean to the length of the prediction
interval. Which is longer? Explain why it would be longer.

CI simulations
We go back to the same code as before, where we looked at the sampling distribution of b̂1. But this time, we
will look at confidence intervals and how the length of confidence intervals change depending on characteristics
of the population and the confidence level of the CI.
#### Change the code below ####

# number of observations in the sample
n <- 20
# number of covariates (must be less than n)
p <- 3
# standard deviation of the X values
x.sd <- 1
# covariance of the X values (choose a positive value less than x.sd)
rho <- .2

# distribution of the errors (choose either "normal" or "gamma" or "T")
# gamma distribution is skewed, T distribution has outliers
errDist <- "gamma"

# Standard deviation of the epsilon terms
err.sd <- 1

# The target proportion of times that the confidence interval should contain the truth
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ci_level <- .95

#### Don't change the code below ####
# Number of times we will simulate a new data set
sim.size <- 5000
# True coefficients
beta <- rep(1, p)
ci <- matrix(0, sim.size, 2)
# Covariance matrix of X
cov.mat <- matrix(rho, p,p); diag(cov.mat) <- x.sdˆ2

# Helper function to draw errors
drawErrors <- function(n, sd = 1, type = "normal"){

if(type == "normal"){
err <- rnorm(n)

} else if (type == "gamma"){
err <- rgamma(n, 1, 1) - 1

} else if (type == "T"){
err <- rt(n, df = 3)

}
return(err * sd)

}

for(i in 1:sim.size){
X <- mvtnorm::rmvnorm(n, sigma = cov.mat)
Y <- X %*% beta + drawErrors(n, sd = err.sd, type = errDist)

mod1 <- lm(Y~X)

### use confint
confidence_interval <- confint(mod1, level = ci_level)
ci[i, ] <- confidence_interval[2, ]

}

avgLength <- mean(ci[,2] - ci[,1])
coverage <- mean(ci[,1] < 1 & ci[,2] > 1)
plot(-5, 5, xlim = c(-3, 5), ylim = c(0, 50), xlab = "", ylab = "")
abline(v = 1, col = "blue", lwd = 3)
# only plot 50 of the 5000 replications
for(i in 1:50){

segments(ci[i, 1], i, ci[i, 2], i, col = ifelse(ci[i,1] < 1 & ci[i,2] > 1, "black", "red"), lwd =2)
}
mtext(paste("Avg Length: ", round(avgLength, 2), "; Coverage: ", round(coverage,3), sep = ""), cex = 1)
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Quantile Regression
It is not as easy to describe the sampling distribution of the least absolute deviation estimator; i.e., picking b̂
by minimizing

∑
i |yi − ŷi| instead of

∑
i(yi − ŷi)2. Nonetheless, simulations allow us to approximate it well.

Below, we compare the (ordinary) least squares estimator with the least absolute deviation estimator.
#### Change the code below ####

# number of observations in the sample
n <- 10
# number of covariates (must be less than n)
p <- 3
# standard deviation of the X values
x.sd <- 1
# covariance of the X values (choose a positive value less than x.sd)
rho <- 0

# distribution of the errors (choose either "normal" or "gamma" or "T")
# gamma distribution is skewed, T distribution has outliers
errDist <- "T"

# Standard deviation of the epsilon terms
err.sd <- 1

#### Don't change the code below ####
# Number of times we will simulate a new data set
sim.size <- 2000
# True coefficients
beta <- rep(1, p)
recOLS <- recQR <- matrix(0, sim.size, (p + 1))
# Covariance matrix of X
cov.mat <- matrix(rho, p,p); diag(cov.mat) <- x.sdˆ2
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# Helper function to draw errors
drawErrors <- function(n, sd = 1, type = "normal"){

if(type == "normal"){
err <- rnorm(n)

} else if (type == "gamma"){
err <- rgamma(n, 1, 1) - 1

} else if (type == "T"){
err <- rt(n, df = 3)

}
return(err * sd)

}

for(i in 1:sim.size){
X <- mvtnorm::rmvnorm(n, sigma = cov.mat)
Y <- X %*% beta + drawErrors(n, sd = err.sd, type = errDist)

mod1 <- lm(Y~X)
mod2 <- quantreg::rq(Y~X)
recOLS[i, ] <- mod1$coefficients
recQR[i, ] <- mod2$coefficients

}

par(mfrow = c(2,2))
hist(recOLS[, 2], main = "Estimated Coefficient (OLS)", xlab = "beta1", freq = F)
abline( v = 1, col = "red")
if(p > 1){
plot(recOLS[ ,2], recOLS[ ,3], xlab = "beta1", ylab = "beta2", main = "Estimated Coefficients (OLS)", pch = 19, cex = .5)
abline(v = 1, h = 1, col = "red")

}

hist(recQR[, 2], main = "Estimated Coefficient (Quantile)", xlab = "beta1", freq = F)
abline( v = 1, col = "red")
if(p > 1){
plot(recQR[ , 2], recQR[ , 3], xlab = "beta1", ylab = "beta2", main = "Estimated Coefficients (Quantile)", pch = 19, cex = .5)
abline(v = 1, h = 1, col = "red")

}

13



Estimated Coefficient (OLS)

beta1

D
en

si
ty

−4 −2 0 2 4 6

0.
0

0.
3

−4 −2 0 2 4 6

−
4

0
4

Estimated Coefficients (OLS)

beta1

be
ta

2

Estimated Coefficient (Quantile)

beta1

D
en

si
ty

−2 0 2 4 6 8

0.
0

0.
3

−2 0 2 4 6
−

4
0

4

Estimated Coefficients (Quantile)

beta1

be
ta

2

On average we can see that (b̂1 − b1)2 for Least squares and Quantile Regression are:
cat("OLS: ")

## OLS:

mean((recOLS[, 2] - 1)ˆ2)

## [1] 0.5637601

cat("QR: ")

## QR:

mean((recQR[, 2] - 1)ˆ2)

## [1] 0.5478441

Questions

• Play around with the parameters. Are there settings where OLS is preferred to quantile regression?
Are there settings where quantile regression is preferred to OLS?
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